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Review – Continuous RVs
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Probability Density Function (PDF).
𝑓:ℝ → ℝ s.t.
• 𝑓 𝑥 ≥ 0 for all 𝑥 ∈ ℝ

• ∫!"
#"𝑓 𝑥 d𝑥 = 1

Cumulative Density Function (CDF).

𝐹 𝑦 = /
!"

$
𝑓(𝑥) d𝑥

Theorem. 𝑓 𝑥 = %&(()
%(

𝑓(𝑥)

𝑦

Density ≠ Probability !

𝐹 𝑦 = ℙ 𝑋 ≤ 𝑦ℙ 𝑋 ∈ [𝑎, 𝑏] = 2
!

"
𝑓# 𝑥 d𝑥

= 𝐹# 𝑏 − 𝐹#(𝑎)



Expectation of a Continuous RV
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Definition. The expected value of a continuous RV 𝑋 is defined as

𝔼(𝑋) = &
23

43
𝑓5 𝑥 ⋅ 𝑥 d𝑥

Fact. 𝔼 𝑎𝑋 + 𝑏𝑌 + 𝑐 = 𝑎𝔼 𝑋 + 𝑏𝔼 𝑌 + 𝑐

Definition. The variance of a continuous RV 𝑋 is defined as

Var 𝑋 = &
23

43
𝑓5 𝑥 ⋅ 𝑥 − 𝔼 𝑋 6 d𝑥 = 𝔼 𝑋6 − 𝔼 𝑋 6



Uniform Distribution
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𝑓5 𝑥 = 4
1

𝑏 − 𝑎
𝑥 ∈ [𝑎, 𝑏]

0 else

0

1

𝑋 ∼ Unif(𝑎, 𝑏)

𝑎 𝑏

We also say that 𝑋
follows the uniform 
distribution / is 
uniformly distributed



Uniform Density – Expectation 
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𝑓5 𝑥 = 4
1

𝑏 − 𝑎
𝑥 ∈ [𝑎, 𝑏]

0 else𝑋 ∼ Unif(𝑎, 𝑏)

𝔼 𝑋 = &
23

43
𝑓5 𝑥 ⋅ 𝑥 d𝑥

=
1

𝑏 − 𝑎
&
7

8
𝑥 d𝑥 =

1
𝑏 − 𝑎

C
𝑥6

2
7

8

=
1

𝑏 − 𝑎
𝑏6 − 𝑎6

2

=
(𝑏 − 𝑎)(𝑎 + 𝑏)

2(𝑏 − 𝑎)
=
𝑎 + 𝑏
2



Uniform Density – Variance 
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𝑓5 𝑥 = 4
1

𝑏 − 𝑎
𝑥 ∈ [𝑎, 𝑏]

0 else𝑋 ∼ Unif(𝑎, 𝑏)

𝔼 𝑋6 = &
23

43
𝑓5 𝑥 ⋅ 𝑥6 d𝑥

=
1

𝑏 − 𝑎
&
7

8
𝑥6 d𝑥 =

1
𝑏 − 𝑎

C
𝑥9

3
7

8

=
𝑏9 − 𝑎9

3(𝑏 − 𝑎)

=
(𝑏 − 𝑎)(𝑏6 + 𝑎𝑏 + 𝑎6)

3(𝑏 − 𝑎)
=
𝑏6 + 𝑎𝑏 + 𝑎6

3



Uniform Density – Variance 
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𝑋 ∼ Unif(𝑎, 𝑏)
𝔼 𝑋$ =

𝑏$ + 𝑎𝑏 + 𝑎$

3
𝔼 𝑋 =

𝑎 + 𝑏
2

Var 𝑋 = 𝔼 𝑋6 − 𝔼 𝑋 6

=
𝑏6 + 𝑎𝑏 + 𝑎6

3
−
𝑎6 + 2𝑎𝑏 + 𝑏6

4

=
4𝑏6 + 4𝑎𝑏 + 4𝑎6

12
−
3𝑎6 + 6𝑎𝑏 + 3𝑏6

12

=
𝑏6 − 2𝑎𝑏 + 𝑎6

12
=

𝑏 − 𝑎 6

12



Uniform Distribution
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𝑓5 𝑥 = 4
1

𝑏 − 𝑎
𝑥 ∈ [𝑎, 𝑏]

0 else

0

1/b-a

𝑋 ∼ Unif(𝑎, 𝑏)

𝑎 𝑏

We also say that 𝑋
follows the uniform 
distribution / is 
uniformly distributed

𝔼 𝑋 =
𝑎 + 𝑏
2

Var 𝑋 =
𝑏 − 𝑎 $

12

𝐹# 𝑦 =
0 𝑥 < 𝑎

𝑥 − 𝑎
𝑏 − 𝑎

𝑥 ∈ [𝑎, 𝑏]

1 𝑥 > 𝑏



Exponential Density
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Assume expected # of occurrences of an event per unit of time is 𝜆
• Cars going through intersection
• Number of lightning strikes
• Requests to web server
• Patients admitted to ER

Numbers of occurrences of event: Poisson distribution

ℙ 𝑋 = 𝑖 = 𝑒!"
𝜆#

𝑖!
(Discrete)

How long to wait until next event? Exponential density!

Let’s define it and then derive it!



The Exponential PDF/CDF
Assume expected # of occurrences of an event per unit of time is 𝜆
Numbers of occurrences of event: Poisson distribution
How long to wait until next event? Exponential density!

• The exponential RV has range [0, ∞], unlike Poisson with range {0,1,2,…}

• Let 𝑌~𝐸𝑥𝑝 𝜆 be the time till the first event. We will compute 𝐹% 𝑡 and 𝑓% 𝑡



The Exponential PDF/CDF
Assume expected # of occurrences of an event per unit of time is 𝜆
Numbers of occurrences of event: Poisson distribution
How long to wait until next event? Exponential density!

• The exponential RV has range [0, ∞], unlike Poisson with range {0,1,2,…}

• Let 𝑌~𝐸𝑥𝑝 𝜆 be the time till the first event. We will compute 𝐹% 𝑡 and 𝑓% 𝑡

• Let X~𝑃𝑜𝑖 𝑡𝜆 be the # of events in the first t units of time, for 𝑡 ≥ 0.

• P Y > t = 𝑃 𝑛𝑜 𝑒𝑣𝑒𝑛𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑡 𝑢𝑛𝑖𝑡𝑠 = 𝑃 𝑋 = 0 = 𝑒&'( '(
!

)!
= 𝑒&'(

• F+ t = 1 − 𝑃 𝑌 > 𝑡 = 1 − 𝑒&'(

• f+ t = ,
,'
𝐹% 𝑡 = 𝜆𝑒&'(



Exponential Distribution

Definition. An exponential random variable 𝑋 with parameter 𝜆 ≥ 0 is 
follows the exponential density

𝑓5 𝑥 = J𝜆𝑒
2:; 𝑥 ≥ 0
0 𝑥 < 0

CDF: For 𝑦 ≥ 0,
𝐹5 𝑦 = 1 − 𝑒2:<

We write 𝑋 ∼ Exp 𝜆 and say 𝑋 that follows the exponential distribution.

0

0.5

1

1.5

2

0 1 2 3 4 5 6 7

𝜆 = 2
𝜆 = 1.5

𝜆 = 1

𝜆 = 0.5



Expectation
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𝑓5 𝑥 = J𝜆𝑒
2:; 𝑥 ≥ 0
0 𝑥 < 0

𝔼 𝑋 = &
23

43
𝑓5 𝑥 ⋅ 𝑥 d𝑥



Expectation
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𝑓5 𝑥 = J𝜆𝑒
2:; 𝑥 ≥ 0
0 𝑥 < 0

𝔼 𝑋 = &
23

43
𝑓5 𝑥 ⋅ 𝑥 d𝑥

= &
C

43
𝜆𝑒2:; ⋅ 𝑥 d𝑥

= O−(𝑥 +
1
𝜆
)𝑒2:;

C

3

=
1
𝜆

Var 𝑋 =
1
𝜆6

𝔼 𝑋 =
1
𝜆

Somewhat complex calculation 
use integral by parts 
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Memorylessness

Definition. A random variable is memoryless if for all 𝑠, 𝑡 > 0,

ℙ 𝑋 > 𝑠 + 𝑡 𝑋 > 𝑠) = ℙ 𝑋 > 𝑡 .
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Fact. 𝑋 ∼ Exp(𝜆) is memoryless.

Assuming exp distr, if you’ve waited 𝑠 minutes, 
prob of waiting 𝑡 more is exactly same as 𝑠 = 0



Memorylessness of Exponential
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Fact. 𝑋 ∼ Exp(𝜆) is memoryless.

ℙ 𝑋 > 𝑠 + 𝑡 𝑋 > 𝑠)

Proof.

Assuming exp distr, if you’ve waited 𝑠 minutes, 
prob of waiting 𝑡 more is exactly same as 𝑠 = 0



Memorylessness of Exponential
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Fact. 𝑋 ∼ Exp(𝜆) is memoryless.

ℙ 𝑋 > 𝑠 + 𝑡 𝑋 > 𝑠) =
ℙ 𝑋 > 𝑠 + 𝑡 ∩ 𝑋 > 𝑠

ℙ(𝑋 > 𝑠)

=
ℙ 𝑋 > 𝑠 + 𝑡
ℙ(𝑋 > 𝑠)

=
𝑒2:(D4E)

𝑒2:D
= 𝑒2:E = ℙ(𝑋 > 𝑡)

Proof.

Assuming exp distr, if you’ve waited 𝑠 minutes, 
prob of waiting 𝑡 more is exactly same as 𝑠 = 0

The only memoryless RVs are the geometric RV (discrete) and Exp RV (continuous)



example

● Time it takes to check someone out at a grocery store is exponential 
with an expected value of 10 mins.

● Independent for different customers
● If you are the second person in line, what is the probability that you 

will have to wait between 10 and 20 mins.



example

● Time it takes to check someone out at a grocery store is exponential 
with an expected value of 10 mins.

● Independent for different customers
● If you are the second person in line, what is the probability that you 

will have to wait between 10 and 20 mins.

𝑇 ~ 𝐸𝑥𝑝(
1
10
)

𝑃 10 ≤ 𝑇 ≤ 20 = 2
1)

$) 1
10
𝑒&

2
1) 𝑑𝑥

𝑦 =
𝑥
10
, 𝑑𝑦 =

𝑑𝑥
10

𝑃 10 ≤ 𝑇 ≤ 20 = 2
1

$
𝑒&3 𝑑𝑦 = −𝑒&3 \

1

$
= 𝑒&1 − 𝑒&$



Normal Distribution       Paranormal Distribution



The Normal Distribution
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Definition. A Gaussian (or normal) random variable with 
parameters 𝜇 ∈ ℝ and 𝜎 ≥ 0 has density

𝑓5 𝑥 = F
6GH

𝑒2
!"# $

$%$

(We say that 𝑋 follows the Normal Distribution, and write 𝑋 ∼ 𝒩(𝜇, 𝜎$)) 

Carl Friedrich 
Gauss



The Normal Distribution

23

Definition. A Gaussian (or normal) random variable with 
parameters 𝜇 ∈ ℝ and 𝜎 ≥ 0 has density

𝑓5 𝑥 = F
6GH

𝑒2
!"# $

$%$

(We say that 𝑋 follows the Normal Distribution, and write 𝑋 ∼ 𝒩(𝜇, 𝜎$)) 

Carl Friedrich 
Gauss

We will see next time why the normal distribution is (in some sense) the most 
important distribution. 

Fact. If 𝑋 ∼ 𝒩 𝜇, 𝜎6 , then 𝔼 𝑋 = 𝜇, and Var 𝑋 = 𝜎6

Expectation follows from density being symmetric around 𝜇, 𝑓# 𝜇 − 𝑥 = 𝑓#(𝜇 + 𝑥)



The Normal Distribution
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0.3
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𝜇 = 0, 𝜎$ = 3

𝜇 = 0,
𝜎$ = 8

𝜇 = −7,
𝜎$ = 6

𝜇 = 7,
𝜎$ = 1

Aka a “Bell Curve” (imprecise name)



Shifting and Scaling the Normal Distribution

Suppose 𝑋 ∼ 𝒩 𝜇, 𝜎6 and  𝑌 = 𝑎𝑋 + 𝑏

25

𝔼 𝑌 =

Var 𝑌 =

What is 

𝑋 − 𝜇
𝜎

What is mean and variance of                     ? 



Closure of normal distribution –
Under Shifting and Scaling

If 𝑋 ∼ 𝒩 𝜇, 𝜎6 , then 𝑌 = 𝑎𝑋 + 𝑏 ∼ 𝒩 𝑎𝜇 + 𝑏, 𝑎6𝜎6

26

𝔼 𝑌 = 𝑎 𝔼 𝑋 + 𝑏 = 𝑎𝜇 + 𝑏

Var 𝑌 = 𝑎6 Var 𝑋 = 𝑎𝜎6
We know: 

Note:  #&4
5
∼ 𝒩 0, 1



Closure of the normal -- under addition

Fact. If 𝑋 ∼ 𝒩 𝜇5 , 𝜎56 , Y ∼ 𝒩 𝜇I , 𝜎I6 (both independent normal RV) 
then a𝑋 + 𝑏𝑌 + 𝑐 ∼ 𝒩 𝑎𝜇5 + 𝑏𝜇I + 𝑐, 𝑎6𝜎56 + 𝑏6𝜎I6

Note: The special thing is that the sum of normal RVs is still a normal RV. 
The values of the expectation and variance is not surprising. 



CDF of normal distribution
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Standard (unit) normal  𝒁 ∼ 𝒩 0, 1

CDF. Φ 𝑧 = ℙ 𝑍 ≤ 𝑧 = F
6G ∫23

J 𝑒2;$/6d𝑥 for 𝑍 ∼ 𝒩 0, 1

Note: Φ 𝑧 has no closed form – generally given via tables 

Fact. If 𝑋 ∼ 𝒩 𝜇, 𝜎6 , then 𝑌 = 𝑎𝑋 + 𝑏 ∼ 𝒩 𝑎𝜇 + 𝑏, 𝑎6𝜎6



Table of Standard Cumulative Normal Density
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The Standard Normal CDF



CDF of normal distribution
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CDF. Φ 𝑧 = ℙ 𝑍 ≤ 𝑧 = F
6G ∫23

J 𝑒2;$/6d𝑥 for 𝑍 ∼ 𝒩 0, 1

Note: Φ 𝑧 has no closed form – generally given via tables 

If 𝑋 ∼ 𝒩 𝜇, 𝜎6 , then 𝐹5 𝑧 = ℙ 𝑋 ≤ 𝑧 = ℙ 52L
H
≤ J2L

H
= Φ(J2L

H
)

Fact. If 𝑋 ∼ 𝒩 𝜇, 𝜎6 , then 𝑌 = 𝑎𝑋 + 𝑏 ∼ 𝒩 𝑎𝜇 + 𝑏, 𝑎6𝜎6

Standard (unit) normal  𝒁 ∼ 𝒩 0, 1



Example

Let 𝑋 ∼ 𝒩 0.4, 4 .  

32

ℙ 𝑋 ≤ 1.2



Example

Let 𝑋 ∼ 𝒩 0.4, 4 = 26 .  

33

ℙ 𝑋 ≤ 1.2 = ℙ
𝑋 − 0.4

2
≤
1.2 − 0.4

2

= ℙ
𝑋 − 0.4

2
≤ 0.4

∼ 𝒩 0, 1

= Φ(0.4) ≈ 0.6554



Example – Off by Standard Deviations
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Let 𝑋 ∼ 𝒩 𝜇, 𝜎6 .  

ℙ 𝑋 − 𝜇 < 𝑘𝜎 =



Example – Off by Standard Deviations
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Let 𝑋 ∼ 𝒩 𝜇, 𝜎6 .  

ℙ 𝑋 − 𝜇 < 𝑘𝜎 = ℙ
𝑋 − 𝜇
𝜎

< 𝑘 =

= ℙ −𝑘 <
𝑋 − 𝜇
𝜎

< 𝑘 = Φ 𝑘 − Φ(−𝑘)

e.g. 𝑘 = 1: 68%, 𝑘 = 2: 95%, 𝑘 = 3: 99%



Gaussian in Nature

Empirical distribution of collected data often resembles a Gaussian … 
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e.g. Height distribution resembles 
Gaussian.

R.A.Fisher (1918) observed that the 
height is likely the outcome of the 
sum of many independent random 
parameters, i.e., can written as

𝑋 = 𝑋1 +⋯+ 𝑋6

Next time: The Central Limit Theorem!
Sum of independent and identical RVs is 
close to the normal distribution! 


