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Review – Continuous RVs
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Probability Density Function (PDF).
!:ℝ → ℝ s.t.
• ! % ≥ 0 for all % ∈ ℝ
• ∫!"

#"! % d% = 1

Cumulative Density Function (CDF).
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.
Density ≠ Probability !

& ' = ℙ * ≤ 'ℙ * ∈ [., 0] = 2
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Expectation of a Continuous RV
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Definition. The expected value of a continuous RV ! is defined as

"(!) = &
23

43
'5 ( ⋅ ( d(

Fact. " +! + -. + / = +" ! + -" . + /

Definition. The variance of a continuous RV ! is defined as

Var ! = &
23

43
'5 ( ⋅ ( − " ! 6 d( = " !6 − " ! 6
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Uniform Distribution
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'5 ( = 4
1

- − + ( ∈ [+, -]
0 else

0

1

! ∼ Unif(+, -)

+ -

We also say that *
follows the uniform 
distribution / is 
uniformly distributed
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Uniform Density – Expectation 
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Uniform Density – Variance 
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Uniform Density – Variance 
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! ∼ Unif(+, -)
5 *$ = 0$ + .0 + .$
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5 * = . + 0
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Var ! = " !6 − " ! 6

= -6 + +- + +6
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Uniform Distribution
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'5 ( = 4
1

- − + ( ∈ [+, -]
0 else

0

1/b-a

! ∼ Unif(+, -)

+ -

We also say that *
follows the uniform 
distribution / is 
uniformly distributed

5 * = . + 0
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Var * = 0 − . $
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Exponential Density
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Assume expected # of occurrences of an event per unit of time is H
• Cars going through intersection
• Number of lightning strikes
• Requests to web server
• Patients admitted to ER

Numbers of occurrences of event: Poisson distribution

ℙ " = $ = %!" &
#

$! (Discrete)

How long to wait until next event? Exponential density!

Let’s define it and then derive it!
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The Exponential PDF/CDF
Assume expected # of occurrences of an event per unit of time is H
Numbers of occurrences of event: Poisson distribution
How long to wait until next event? Exponential density!

• The exponential RV has range [0, ∞], unlike Poisson with range {0,1,2,…}

• Let A~C#D E be the time till the first event. We will compute &% F and !% F
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The Exponential PDF/CDF
Assume expected # of occurrences of an event per unit of time is H
Numbers of occurrences of event: Poisson distribution
How long to wait until next event? Exponential density!

• The exponential RV has range [0, ∞], unlike Poisson with range {0,1,2,…}

• Let A~C#D E be the time till the first event. We will compute &% F and !% F

• Let X~HIJ FE be the # of events in the first t units of time, for F ≥ 0.

• P Y > t = H PI QRQPF JP FℎQ !JTUF F VPJFU = H * = 0 = Q&'( '(
!

)! = Q&'(

• F+ t = 1 − H A > F = 1 − Q&'(

• f+ t = ,
,' &% F = EQ&'(
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Exponential Distribution

Definition. An exponential random variable ! with parameter H ≥ 0 is 
follows the exponential density

'5 ( = JHK2:; ( ≥ 0
0 ( < 0

CDF: For M ≥ 0,
N5 M = 1 − K2:<

We write = ∼ Exp B and say = that follows the exponential distribution.
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Expectation
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Expectation
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'5 ( = JHK2:; ( ≥ 0
0 ( < 0
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= 1
H

Var ! = 1
H6

" ! = 1
H

Somewhat complex calculation 
use integral by parts 



15



Memorylessness

Definition. A random variable is memoryless if for all P, Q > 0,

ℙ ! > P + Q ! > P) = ℙ ! > Q .
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Fact. " ∼ Exp(&) is memoryless.

Assuming exp distr, if you’ve waited P minutes, 
prob of waiting Q more is exactly same as P = 0
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Memorylessness of Exponential
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Fact. " ∼ Exp(&) is memoryless.

ℙ ! > P + Q ! > P)

Proof.

Assuming exp distr, if you’ve waited - minutes, 
prob of waiting . more is exactly same as - = 0
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Memorylessness of Exponential
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Fact. " ∼ Exp(&) is memoryless.

ℙ ! > P + Q ! > P) = ℙ ! > P + Q ∩ ! > P
ℙ(! > P)

= ℙ ! > P + Q
ℙ(! > P)

= K2:(D4E)
K2:D = K2:E = ℙ(! > Q)

Proof.

Assuming exp distr, if you’ve waited - minutes, 
prob of waiting . more is exactly same as - = 0

The only memoryless RVs are the geometric RV (discrete) and Exp RV (continuous)



example

● Time it takes to check someone out at a grocery store is exponential 
with an expected value of 10 mins.

● Independent for different customers
● If you are the second person in line, what is the probability that you 

will have to wait between 10 and 20 mins.
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example

● Time it takes to check someone out at a grocery store is exponential 
with an expected value of 10 mins.

● Independent for different customers
● If you are the second person in line, what is the probability that you 

will have to wait between 10 and 20 mins.

Z ~ C#D( 110)
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Normal Distribution       Paranormal Distribution



The Normal Distribution
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Definition. A Gaussian (or normal) random variable with 
parameters V ∈ ℝ and X ≥ 0 has density

'5 ( = F
6GH K
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(We say that * follows the Normal Distribution, and write * ∼ ^(_, `$)) 
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Gausso

FF
mean variance



The Normal Distribution
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Definition. A Gaussian (or normal) random variable with 
parameters V ∈ ℝ and X ≥ 0 has density

'5 ( = F
6GH K

2 !"# $
$%$

(We say that * follows the Normal Distribution, and write * ∼ ^(_, `$)) 

Carl Friedrich 
Gauss

We will see next time why the normal distribution is (in some sense) the most 
important distribution. 

Fact. If ! ∼ Y V, X6 , then " ! = V, and Var ! = X6

Expectation follows from density being symmetric around _, !# _ − # = !#(_ + #)



The Normal Distribution
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Shifting and Scaling the Normal Distribution

Suppose ! ∼ Y V, X6 and  . = +! + -
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" . =
Var . =

What is 

* − _
`What is mean and variance of                     ? 
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Closure of normal distribution –
Under Shifting and Scaling

If ! ∼ Y V, X6 , then . = +! + - ∼ Y +V + -, +6X6
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" . = + " ! + - = +V + -
Var . = +6 Var ! = +X6

We know: 

Note:  #&45 ∼ ^ 0, 1
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Closure of the normal -- under addition

Fact. If ! ∼ Y V5 , X56 , Y ∼ Y VI , XI6 (both independent normal RV) 
then a! + -. + / ∼ Y +V5 + -VI + /, +6X56 + -6XI6

Note: The special thing is that the sum of normal RVs is still a normal RV. 
The values of the expectation and variance is not surprising. 
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