SSE 312

Foundations of Computing II

Lecture 15: Exponential and Normal Distribution

wPAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE \& ENGINEERING

Anna R. Marlin

Slide Credit: Based on Stefano Tessaro's slides for 312 19au incorporating ideas from Alex Thun, Rachel Lin, Hunter Schafer \& myself ©

$$
\begin{aligned}
& \text { Quiz: Out Monday, Nav } 8 \text { 6pm } \\
& \text { Due Tuesday, Nara } 1 \text { Iisipm }
\end{aligned}
$$

Dispute. $\quad P_{x}(x)=\operatorname{Pr}(x=x)$

$$
\rightleftarrows F_{\left.x^{(x)}\right)=\operatorname{Pr}(X=x)}
$$

Review - Continuous RVs

Probability Density Function (PDF).
$f: \mathbb{R} \rightarrow \mathbb{R}$ s.t.

- $\underline{f(x)} \geq 0$ for all $x \in \mathbb{R}$
- $\int_{-\infty}^{+\infty} f(x) \mathrm{d} x=1$

Density \neq Probability !

$$
\begin{aligned}
\mathbb{P}(X \in[a, b]) & =\int_{a}^{b} f_{X}(x) \mathrm{d} x \\
& =F_{X}(b)-F_{X}(a)
\end{aligned}
$$

Distin
Cumulative Density Function (CDF).

$$
F(y)=\int_{-\infty}^{y} f(x) \mathrm{d} x=\operatorname{Pr}(X \leq y)
$$

Theorem. $f(x)=\frac{d F(x)}{d x}$

y

$$
\begin{aligned}
F(y) & =\mathbb{P}(X \leq y) \\
& =\mathbb{P}(\boldsymbol{x}<\boldsymbol{y})
\end{aligned}
$$

$$
E(X)=\sum_{x=\lambda_{x}} x \operatorname{Pr}(x=x) \quad \begin{aligned}
& \text { sur } \rightarrow \text { int } \\
& \text { prat } \rightarrow \text { pip }
\end{aligned}
$$

Expectation of a Continuous RV

Definition. The expected value of a continuous RV X is defined as

$$
\mathbb{E}(X)=\int_{-\infty}^{+\infty} f_{X}(x) \cdot x \mathrm{~d} x
$$

Fact. $\mathbb{E}(a X+b Y+c)=a \mathbb{E}(X)+b \mathbb{E}(Y)+c$

Definition. The variance of a continuous RV X is defined as

$E(g(X))=$ $g_{-(x)} f(x) d x$

Uniform Distribution
$X \sim \operatorname{Unif}(a, b)$
We also say that X follows the uniform distribution / is
0
0 uniformly distributed

$$
f_{X}(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & x \in[a, b] \\
0 & \text { else }
\end{array}\right.
$$

$$
b
$$

$$
+2+2+2
$$

$$
\int \frac{1}{b-a} d x=1
$$

Uniform Density - Expectation

$$
X \sim \operatorname{Unif}(a, b)
$$

$$
f_{X}(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & x \in[a, b] \\
0 & \text { else }
\end{array}\right.
$$

$$
\mathbb{E}(X)=\underline{\int_{-\infty}^{+\infty} f_{X}(x)} \cdot x \mathrm{~d} x
$$

$$
=\frac{1}{b-a} \int_{a}^{b} x \mathrm{~d} x=\left.\frac{1}{b-a}\left(\frac{x^{2}}{2}\right)\right|_{a} ^{b}=\frac{1}{b-a}\left(\frac{b^{2}-a^{2}}{2}\right)
$$

$$
=\frac{(b-a)(a+b)}{2(b-a)}=\frac{a+b}{2}
$$

Uniform Density - Variance

$$
X \sim \operatorname{Unif}(a, b)
$$

$$
\mathbb{E}\left(X^{2}\right)=\int_{-\infty}^{+\infty} f_{X}(x) x^{2} \mathrm{~d} x
$$

$$
=\overline{\frac{1}{b-a}} \int_{a}^{b} x^{2} \mathrm{~d} x=\left.\frac{1}{b-a}\left(\frac{x^{3}}{3}\right)\right|_{a} ^{b}=\frac{b^{3}-a^{3}}{3(b-a)}
$$

$$
=\frac{(b-a)\left(b^{2}+a b+a^{2}\right)}{3(b-a)}=\frac{b^{2}+a b+a^{2}}{3}
$$

$\hat{\uparrow}$

Uniform Density - Variance

$$
\mathbb{E}\left(X^{2}\right)=\frac{b^{2}+a b+a^{2}}{3} \quad \mathbb{E}(X)=\frac{a+b}{2}
$$

$X \sim \operatorname{Unif}(a, b)$
$\operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2}$

$$
\begin{aligned}
& =\frac{b^{2}+a b+a^{2}}{3}-\frac{a^{2}+2 a b+b^{2}}{4} \\
& =\frac{4 b^{2}+4 a b+4 a^{2}}{12}-\frac{3 a^{2}+6 a b+3 b^{2}}{12}
\end{aligned}
$$

$$
=\frac{b^{2}-2 a b+a^{2}}{12}=\frac{(b-a)^{2}}{12}
$$

Uniform Distribution

$X \sim \operatorname{Unif}(a, b)$
We also say that X follows the uniform distribution / is

$$
f_{X}(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & x \in[a, b] \\
0 & \text { else }
\end{array}\right.
$$

$$
F_{X}(y)=\left\{\begin{array}{cc}
\frac{0}{x-a} & x<a \\
b-a & x>b \\
1 & x>b
\end{array}\right.
$$

$$
\mathbb{E}(X)=\frac{a+b}{2}
$$

$$
\xrightarrow{\operatorname{Var}(X)=\frac{(b-a)^{2}}{12}}
$$

Exponential Density

Assume expected \# of occurrences of an event per unit of time is λ

- Cars going through intersection
- Number of lightning strikes
- Requests to web server
- Patients admitted to ER

Numbers of occurrences of event: Poisson distribution

(Discrete)

How long to wait until next event? Exponential density!
Let's define it and then derive it!

The Exponential PDF/CDF
Init
Assume expected \# of occurrences of an event per unit of time is λ
Numbers of occurrences of event: Poisson distribution Poisson (λ)
How long to wait until next event? Exponential density!

- The exponential RV has range $[0, \infty]$, unlike Poisson with range $\{0,1,2, \ldots\}$
- Let $Y \sim \operatorname{Exp}(\lambda)$ be the time till the first event. We will compute $F_{Y}(t)$ and $f_{Y}(t)$

The Exponential PDF/CDF

$$
P\left(\begin{array}{c}
t<0 \\
P \leq t)=0
\end{array}\right.
$$

Assume expected \# of occurrences of an event per unit of time is λ
Numbers of occurrences of event: Poisson distribution
How long to wait until next event? Exponential density!

- The exponential RV has range $[0, \infty]$, unlike Poisson with range $\{0,1,2, \ldots\}$
- Let $Y \sim \operatorname{Exp}(\lambda)$ be the time till the first event. We will compute $F_{Y}(t)$ and $f_{Y}(t)$
- Let $\mathrm{X} \sim \operatorname{Poi}(t \lambda)$ be the \# of events in the first t units of time, for $t \geq 0$.
- $\mathrm{P}(\mathrm{Y}>\mathrm{t})=P($ no event in the first t units $)=P(X=0)=e^{-t \lambda \frac{t \lambda^{0}}{0!}=e^{-t \lambda}, ~(X)}$
- $\mathrm{F}_{\mathrm{Y}}(\mathrm{t})=1-P(Y>t)=1-e^{-t \lambda}$
- $\mathrm{f}_{\mathrm{Y}}(\mathrm{t})=\frac{d}{d t} F_{Y}(t)=\lambda e^{-t \lambda}$

Exponential Distribution

Definition. An exponential random variable X with parameter $\lambda \geq 0$ is follows the exponential density

$$
f_{X}(x)=\left\{\begin{array}{cc}
\lambda e^{-\lambda x} & x \geq 0 \\
0 & x<0
\end{array}\right.
$$

We write $X \sim \operatorname{Exp}(\lambda)$ and say X that follows the exponential distribution.

CDF: For $y \geq 0$,

$$
F_{X}(y)=1-e^{-\lambda y}
$$

$F_{x}(y)=0$
$y<0$

Expectation

$$
f_{X}(x)=\left\{\begin{array}{cc}
\lambda e^{-\lambda x} & x \geq 0 \\
0 & x<0
\end{array}\right.
$$

$$
\begin{aligned}
\mathbb{E}(X) & =\int_{-\infty}^{+\infty} f_{X}(x) \cdot x \mathrm{~d} x \\
& =\int_{0}^{\infty} \lambda e^{-\lambda x} x d x
\end{aligned}
$$

Expectation

$$
\begin{aligned}
\mathbb{E}(X) & =\int_{-\infty}^{+\infty} f_{X}(x) \cdot x \mathrm{~d} x & \\
& =\int_{0}^{+\infty} \lambda e^{-\lambda x} \cdot x \mathrm{~d} x & \mathbb{E}(X)=\frac{1}{\lambda} \\
& =\left.\left(-\left(x+\frac{1}{\lambda}\right) e^{-\lambda x}\right)\right|_{0} ^{\infty}=\frac{1}{\lambda} & \operatorname{Var}(X)=\frac{1}{\lambda^{2}}
\end{aligned}
$$

Somewhat complex calculation use integral by parts

Memorylessness

Definition. A random variable is memoryless if for all $s, t>0$,

$$
\mathbb{P}(X>s+t \mid X>s)=\mathbb{P}(X>t) .
$$

Fact. $X \sim \operatorname{Exp}(\lambda)$ is memoryless.

Assuming exp distr, if you've waited s minutes, prob of waiting t more is exactly same as $s=0$

Memorylessness of Exponential
Fact. $X \sim \operatorname{Exp}(\lambda)$ is memoryless.
Proof.

$$
\begin{aligned}
& \text { Proof. } \begin{aligned}
& \mathbb{P}(X>s+t \mid X>s)=\operatorname{Pr}(X>s+t), X>s) \\
&=\operatorname{Pr}(X>t)
\end{aligned} \\
& =\frac{\operatorname{Pr}(X>s+t)}{\operatorname{P(X>s)}}=\frac{e^{-\lambda(s+t)}}{e^{-\lambda s}} \\
& \operatorname{Pr}(X>a)=e^{-\lambda a} \\
& X \sim e^{-\lambda t}=\operatorname{Pr}(X>t)^{\prime}
\end{aligned}
$$

Memorylessness of Exponential

Assuming exp distr, if you've waited s minutes, prob of waiting t more is exactly same as $s=0$

Fact. $X \sim \operatorname{Exp}(\lambda)$ is memoryless.

Proof.

$$
\begin{aligned}
\mathbb{P}(X>s+t \mid X>s) & =\frac{\mathbb{P}(\{X>s+t\} \cap\{X>s\})}{\mathbb{P}(X>s)} \\
& =\frac{\mathbb{P}(X>s+t)}{\mathbb{P}(X>s)} \\
& =\frac{e^{-\lambda(s+t)}}{e^{-\lambda s}}=e^{-\lambda t}=\mathbb{P}(X>t)
\end{aligned}
$$

The only memoryless RVs are the geometric RV (discrete) and Exp RV (continuous)
$X \operatorname{rexp}(\lambda)$ example

$$
\lambda=\frac{1}{10}
$$

$$
f_{X}(x)=\left\{\begin{array}{cc}
\lambda e^{-\lambda x} & x \geq 0 \\
0 & x<0
\end{array}\right.
$$

$$
E(x)=\frac{1}{\lambda}
$$

- Time it takes to check someone out at a grocery store is exponential with an expected value of 10 mins .
- Independent for different customers
- If you are the second person in line, what is the probability that you

example

- Time it takes to check someone out at a grocery store is exponential with an expected value of 10 mins.
- Independent for different customers
- If you are the second person in line, what is the probability that you will have to wait between 10 and 20 mins.

$$
\begin{aligned}
& T \sim \operatorname{Exp}\left(\frac{1}{10}\right) \\
& P(10 \leq T \leq 20)=\int_{10}^{20} \frac{1}{10} e^{\frac{x}{10}} d x \\
& y=\frac{x}{10}, d y=\frac{d x}{10} \\
& P(10 \leq T \leq 20)=\int_{1}^{2} e^{-y} d y=-\left.e^{-y}\right|_{1} ^{2}=e^{-1}-e^{-2}
\end{aligned}
$$

Normal Distribution

Paranormal Distribution

The Normal Distribution

Definition. A Gaussian (or normal) random variable with parameters $\mu \in \mathbb{R}$ and $\sigma \geq 0$ has density

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

(We say that X follows the Normal Distribution, and write $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$)

The Normal Distribution

Definition. A Gaussian (or normal) random variable with parameters $\mu \in \mathbb{R}$ and $\sigma \geq 0$ has density

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

Carl Friedrich Gauss
(We say that X follows the Normal Distribution, and write $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$)

$$
\text { Fact. If } X \sim \mathcal{N}\left(\mu, \sigma^{2}\right) \text {, then } \mathbb{E}(X)=\mu \text {, and } \operatorname{Var}(X)=\sigma^{2}
$$

Expectation follows from density being symmetric around $\mu, f_{X}(\mu-x)=f_{X}(\mu+x)$

We will see next time why the normal distribution is (in some sense) the most important distribution.

The Normal Distribution

Aka a "Bell Curve" (imprecise name)

Shifting and Scaling the Normal Distribution

Suppose $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ and $Y=a X+b$

What is

$$
\begin{aligned}
E(Y)=E(a X+b)=a E(X)+b & =a \mu+b \\
\operatorname{Var}(Y)=\operatorname{Van}(a X+b)=\operatorname{Van}(a X) & =a^{2} \operatorname{Var}(X) \\
& =a^{2} \sigma^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
\operatorname{Var}(Y)=\operatorname{Van}(a X+b)=\operatorname{Van}(a X) & =a^{2} \operatorname{Var}(X) \\
& =a^{2} \sigma^{2}
\end{aligned} \\
& \text { What is mean and variance of } \frac{x-\mu}{\sigma} \text { ? } \\
& =a^{2} \sigma^{2} \\
& \begin{array}{r}
\operatorname{Var}(Y)=\operatorname{Var}(a X+b)=\operatorname{Vat} \\
\text { What is mean and variance of } \left.\frac{X-\mu}{\sigma}\right) ? \\
a=\frac{1}{\sigma} \quad b=-\frac{\mu}{\sigma}
\end{array} \\
& F(Z)=\frac{1}{\sigma} \cdot \mu-\frac{1}{\sigma}=0 \\
& \operatorname{Van}(2)=a^{2} \sigma^{2}=1
\end{aligned}
$$

Closure of normal distribution Under Shifting and Scaling

If $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, then $Y=a X+b \sim \mathcal{N}\left(a \mu+b, a^{2} \sigma^{2}\right)$
We know: $\begin{aligned} & \mathbb{E}(Y)=a \mathbb{E}(X)+b=a \mu+b \\ & \operatorname{Var}(Y)=a^{2} \operatorname{Var}(X)=a^{2} \sigma^{2}\end{aligned}$

Note: $\left[\frac{X-\mu}{\sigma} \sim \mathcal{N}(0,1)\right.$

Closure of the normal -- under addition
Fact. If $X \sim \mathcal{N}\left(\mu_{X}, \sigma_{X}^{2}\right), \mathrm{Y} \sim \mathcal{N}\left(\mu_{Y}, \sigma_{Y}^{2}\right)$ (both independent normal RV) then $\mathrm{a} X+b Y+c \sim \mathcal{N}\left(a \mu_{X}+b \mu_{Y}+c, a^{2} \sigma_{X}^{2}+b^{2} \sigma_{Y}^{2}\right)$

Note: The special thing is that the sum of normal RVs is still a normal RV.
The values of the expectation and variance is not surprising.

