CSE 312
 Foundations of Computing II

Lecture 14: Continuous Random Variables

w
PAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE \& ENGINEERING

Anna R. Karlin

Slide Credit: Based on Stefano Tessaro’s slides for 312 19au incorporating ideas from Alex Tsun, Rachel Lin, Hunter Schafer \& myself ©

Agenda

- Continuous Random Variables
- Probability Density Function
- Cumulative Distribution Function

Often we want to model experiments where the outcome is not discrete.

Example - Lightning Strike

Lightning strikes a pole within a one-minute time frame

- T = time of lightning strike
- Every time within $[0,1]$ is equally likely
- Time measured with infinitesimal precision.

Lightning strikes a pole within a one-minute time frame

- T = time of lightning strike
- Every point in time within $[0,1]$ is equally likely

Lightning strikes a pole within a one-minute time frame

- T = time of lightning strike
- Every point in time within $[0,1]$ is equally likely

Lightning strikes a pole within a one-minute time frame

- T = time of lightning strike
- Every point in time within $[0,1]$ is equally likely

Bottom line

- This gives rise to a different type of random variable
- $\mathbb{P}(T=x)=0$ for all $x \in[0,1]$
- Yet, somehow we want
$-\mathbb{P}(T \in[0,1])=1$
$-\mathbb{P}(T \in[a, b])=b-a$
- ...
- How do we model the behavior of T ?
- Discrete Approximation?

Poll: Given the CDF, how do you compute the pmf?
https://pollev.com/ annakarlin185
$\operatorname{Pr}(X=k)=$
a. $F_{X}(k-1)$
b. $F_{X}(1)+F_{X}(2)+\cdots+F_{X}(k-1)$
c. $F_{X}(k)-F_{X}(k-1)$
d. I don't know.

Definition. A continuous random variable* X is defined by a probability density function (PDF) $f_{X}: \mathbb{R} \rightarrow \mathbb{R}$, such that

Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$

Probability Density Function - Intuition

Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$

$$
\text { Normalization: } \int_{-\infty}^{+\infty} f_{X}(x) \mathrm{d} x=1
$$

Probability Density Function - Intuition

Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$

$$
\begin{aligned}
& \text { Normalization: } \int_{-\infty}^{+\infty} f_{X}(x) \mathrm{d} x=1 \\
& \qquad P(a \leq X \leq b)=\int_{a}^{b} f_{X}(x) \mathrm{d} x
\end{aligned}
$$

Probability Density Function - Intuition

Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$

$$
\begin{array}{r}
\text { Normalization: } \int_{-\infty}^{+\infty} f_{X}(x) \mathrm{d} x=1 \\
P(a \leq X \leq b)=\int_{a}^{b} f_{X}(x) \mathrm{d} x \\
P(X=y)=P(y \leq X \leq y)=\int_{y}^{y} f_{X}(x) \mathrm{d} x=0
\end{array}
$$

Probability Density Function - Intuition

Probability Density Function - Intuition

Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$
Normalization: $\int_{-\infty}^{+\infty} f_{X}(x) \mathrm{d} x=1$

$$
P(a \leq X \leq b)=\int_{a}^{b} f_{X}(x) \mathrm{d} x
$$

$$
P(X=y)=P(y \leq X \leq y)=\int_{y}^{y} f_{X}(x) \mathrm{d} x=0
$$

y

$$
\begin{array}{r}
P(X \approx y) \approx P\left(y-\frac{\epsilon}{2} \leq X \leq y+\frac{\epsilon}{2}\right)=\int_{y-\frac{\epsilon}{2}}^{y+\frac{\epsilon}{2}} f_{X}(x) \mathrm{d} x \approx \epsilon f_{X}(y) \\
\frac{P(X \approx y)}{P(X \approx z)} \approx \frac{\epsilon f_{X}(y)}{\epsilon f_{X}(z)}=\frac{f_{X}(y)}{f_{X}(z)}
\end{array}
$$

Definition. A continuous random variable X is defined by a probability density function (PDF) $f_{X}: \mathbb{R} \rightarrow \mathbb{R}$, such that

Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$
Normalization: $\int_{-\infty}^{+\infty} f_{X}(x) \mathrm{d} x=1$
$P(a \leq X \leq b)=\int_{a}^{b} f_{X}(x) \mathrm{d} x$
$P(X=y)=P(y \leq X \leq y)=\int_{y}^{y} f_{X}(x) \mathrm{d} x=0$
$P(X \approx y) \approx P\left(y-\frac{\epsilon}{2} \leq X \leq y+\frac{\epsilon}{2}\right)=\int_{y \frac{\epsilon}{2}}^{y+\frac{\epsilon}{2}} f_{X}(x) \mathrm{d} x \approx \epsilon f_{X}(y)$
$\frac{P(X \approx y)}{P(X \approx z)} \approx \frac{\epsilon f_{X}(y)}{\epsilon f_{X}(z)}=\frac{f_{X}(y)}{f_{X}(z)}$

PDF of Uniform RV

$$
X \sim \operatorname{Unif}(0,1)
$$

Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$

Probability of Event

$X \sim \operatorname{Unif}(0,1)$
Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$

PDF of Uniform RV

$X \sim \operatorname{Unif}(0,1)$

PDF of Uniform RV

$X \sim \operatorname{Unif}(0,0.5)$

Uniform Distribution

$X \sim \operatorname{Unif}(a, b)$

$$
f_{X}(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & x \in[a, b] \\
0 & \text { else }
\end{array}\right.
$$

Example. T ~Unif(0,1)
0

Probability Density Function

$$
f_{T}(x)= \begin{cases}1, & x \in[0,1] \\ 0, & x \notin[0,1]\end{cases}
$$

Cumulative Distribution Function

Definition. The cumulative distribution function (cdf) of X is

$$
F_{X}(a)=\mathbb{P}(X \leq a)=\int_{-\infty}^{a} f_{X}(x) \mathrm{d} x
$$

By the fundamental theorem of Calculus $f_{X}(x)=\frac{d}{d x} F(x)$

Cumulative Distribution Function

Definition. The cumulative distribution function (cdf) of X is

$$
F_{X}(a)=\mathbb{P}(X \leq a)=\int_{-\infty}^{a} f_{X}(x) \mathrm{d} x
$$

By the fundamental theorem of Calculus $f_{X}(x)=\frac{d}{d x} F(x)$
Therefore: $\mathbb{P}(X \in[a, b])=F(b)-F(a)$
F_{X} is monotone increasing, since $f_{X}(x) \geq 0$. That is $F_{X}(c) \leq F_{X}(d)$ for $c \leq d$
$\operatorname{Lim}_{a \rightarrow-\infty} F_{X}(a)=P(X \leq-\infty)=0 \quad \operatorname{Lim}_{a \rightarrow+\infty} F_{X}(a)=P(X \leq+\infty)=1$

From Discrete to Continuous

	Discrete	Continuous
PMF/PDF	$p_{X}(x)=P(X=x)$	$f_{X}(x) \neq P(X=x)=0$
CDF	$F_{X}(x)=\sum_{t \leq x} p_{X}(t)$	$F_{X}(x)=\int_{-\infty}^{x} f_{X}(t) d t$
Normalization	$\sum_{x} p_{X}(x)=1$	$\int_{-\infty}^{\infty} f_{X}(x) d x=1$
Expectation	$\mathbb{E}[g(X)]=\sum_{x} g(x) p_{X}(x)$	$\mathbb{E}[g(X)]=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x$

Expectation of a Continuous RV

Definition. The expected value of a continuous RV X is defined as

$$
\mathbb{E}(X)=\int_{-\infty}^{+\infty} f_{X}(x) \cdot x \mathrm{~d} x
$$

Fact. $\mathbb{E}(a X+b Y+c)=a \mathbb{E}(X)+b \mathbb{E}(Y)+c$

Definition. The variance of a continuous $\mathrm{RV} X$ is defined as

$$
\operatorname{Var}(X)=\int_{-\infty}^{+\infty} f_{X}(x) \cdot(x-\mathbb{E}(X))^{2} \mathrm{~d} x=\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2}
$$

Expectation of a Continuous RV

Example. $T \sim \operatorname{Unif}(0,1)$

Definition.

$$
\mathbb{E}(X)=\int_{-\infty}^{+\infty} f_{X}(x) \cdot x \mathrm{~d} x
$$

Uniform Distribution

$X \sim \operatorname{Unif}(a, b)$
We also say that X follows the uniform distribution / is

Uniform Density - Expectation

$X \sim \operatorname{Unif}(a, b)$

$$
f_{X}(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & x \in[a, b] \\
0 & \text { else }
\end{array}\right.
$$

$\mathbb{E}(X)=\int_{-\infty}^{+\infty} f_{X}(x) \cdot x \mathrm{~d} x$

Uniform Density - Expectation

$$
X \sim \operatorname{Unif}(a, b)
$$

$$
f_{X}(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & x \in[a, b] \\
0 & \text { else }
\end{array}\right.
$$

$$
\begin{aligned}
\mathbb{E}(X)=\int_{-\infty}^{+\infty} f_{X}(x) \cdot x \mathrm{~d} x & \\
=\frac{1}{b-a} \int_{a}^{b} x \mathrm{~d} x= & \left.\frac{1}{b-a}\left(\frac{x^{2}}{2}\right)\right|_{a} ^{b}=\frac{1}{b-a}\left(\frac{b^{2}-a^{2}}{2}\right) \\
& =\frac{(b-a)(a+b)}{2(b-a)}=\frac{a+b}{2}
\end{aligned}
$$

Uniform Density - Variance

$$
\begin{aligned}
& X \sim \operatorname{Unif}(a, b) \\
& \mathbb{E}\left(X^{2}\right)=\int_{-\infty}^{+\infty} f_{X}(x) \cdot x^{2} \mathrm{~d} x
\end{aligned}
$$

$$
f_{X}(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & x \in[a, b] \\
0 & \text { else }
\end{array}\right.
$$

Uniform Density - Variance

$$
\begin{aligned}
& X \sim \operatorname{Unif}(a, b) \\
& \mathbb{E}\left(X^{2}\right)=\int_{-\infty}^{+\infty} f_{X}(x) \cdot x^{2} \mathrm{~d} x
\end{aligned}
$$

$$
f_{X}(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & x \in[a, b] \\
0 & \text { else }
\end{array}\right.
$$

$$
=\frac{1}{b-a} \int_{a}^{b} x^{2} \mathrm{~d} x=\left.\frac{1}{b-a}\left(\frac{x^{3}}{3}\right)\right|_{a} ^{b}=\frac{b^{3}-a^{3}}{3(b-a)}
$$

$$
=\frac{(b-a)\left(b^{2}+a b+a^{2}\right)}{3(b-a)}=\frac{b^{2}+a b+a^{2}}{3}
$$

Uniform Density - Variance

$$
\mathbb{E}\left(X^{2}\right)=\frac{b^{2}+a b+a^{2}}{3} \quad \mathbb{E}(X)=\frac{a+b}{2}
$$

$X \sim \operatorname{Unif}(a, b)$
$\operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2}$

$$
\begin{aligned}
& =\frac{b^{2}+a b+a^{2}}{3}-\frac{a^{2}+2 a b+b^{2}}{4} \\
& =\frac{4 b^{2}+4 a b+4 a^{2}}{12}-\frac{3 a^{2}+6 a b+3 b^{2}}{12}
\end{aligned}
$$

$$
=\frac{b^{2}-2 a b+a^{2}}{12}=\frac{(b-a)^{2}}{12}
$$

