CSE 312
 Foundations of Computing II

Lecture 14: Continuous Random Variables

wPAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE \& ENGINEERING

Anna R. Karlin

Slide Credit: Based on Stefano Tessaro's slides for 312 19au incorporating ideas from Alex Tsun, Rachel Lin, Hunter Schafer \& myself ©

Agenda

- Continuous Random Variables
- Probability Density Function
- Cumulative Distribution Function

Often we want to model experiments where the outcome is not discrete.

Example - Lightning Strike

Lightning strikes a pole within a one-minute time frame

- T = time of lightning strike
- Every time within $[0,1]$ is equally likely
- Time measured with infinitesimal precision.

Lightning strikes a pole within a one-minute time frame

- T = time of lightning strike
- Every point in time within $[0,1]$ is equally likely

Lightning strikes a pole within a one-minute time frame

- T = time of lightning strike
- Every point in time within $[0,1]$ is equally likely

Lightning strikes a pole within a one-minute time frame

- T = time of lightning strike
- Every point in time within $[0,1]$ is equally likely

Bottom line

- This gives rise to a different type of random variable
- $\mathbb{P}(T=x)=0$ for all $x \in[0,1]$
- Yet, somehow we want

- How do we model the behavior of T ?
- Discrete Approximation?

Disucte r.v. X win range $\Omega_{x}=\{0,1, \ldots\}$

$$
\begin{aligned}
& P_{X}(x)=\frac{p m f}{\operatorname{Pr}(X=x)} \\
& \begin{array}{c}
\frac{C D F}{}(x)=\operatorname{Pr}(X \leq x)
\end{array} \\
& \sum_{x \in \Omega} p_{x}(x)=1 \\
& p_{X}(x) \geqslant 0 \quad \forall x \\
& F_{X} \text { is monetove increang } \\
& \text { fron } 0 \text { to } 1 \\
& F_{X}^{X}(w)=\sum_{\substack{x \in \Omega_{X} \\
\text { s.t. } x \leq w}} P_{X}(x)
\end{aligned}
$$

Poll: Given the CDF, how do you compute the mf?
https://pollev.com/ annakarlin185

$$
\operatorname{Pr}(X=k)=P_{X}(k)=
$$

$0 \frac{1}{2}$ (1) $\frac{3}{2} 2$. \uparrow
a. $F_{X}(k-1)$
b. $F_{X}(1)+F_{X}(2)+\cdots+F_{X}(k-1)$
c. $F_{X}(k)-F_{X}(k$

$$
p_{x}^{(k)}=P_{r}\left(x_{-1}\right)=F_{x}^{(k)}-F_{x}^{(k-1)}
$$

$$
F_{x}(\omega)=\sum_{y}^{(m) u_{x}} p_{x=1(1)}
$$

Want to represut cont randon van. uniform sander $[0,1]$

pei rolonges males sense introduce probability densing fin

$$
\begin{array}{cc}
P_{x}^{(k)=P r(x-1)}=\frac{F_{x}(t)-F_{x}(-1)}{k-(k-1)} & F_{x}(\omega)=\sum_{x \in \Omega_{x}} p_{x}(x) \\
f_{x}(x)=\frac{d}{d x} F_{x}(x) & F_{x}(\omega)=\int_{-\infty}^{\omega} f_{X}(x) d x \\
p d f_{0} & \\
f_{X}(x)=1 \quad 0 \leq x=1 & F_{X}^{(\omega)}=\omega
\end{array}
$$

Definition. A continuous random variable* X is defined by a probability density function (PDF) $f_{X}: \mathbb{R} \rightarrow \mathbb{R}$, such that

$\sum_{x=1} p_{x}^{(x)}=1$

Probability Density Function - Intuition

Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$

$$
\text { Normalization: } \int_{-\infty}^{+\infty} f_{X}(x) \mathrm{d} x=1
$$

$$
\operatorname{Pr}(a \leq X \leq b)=\sum_{\substack{w \leq \Omega_{x} \\ a \leq w \leq b}} P_{x}(w)
$$

Probability Density Function - Intuition

Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$

$$
\begin{aligned}
& \text { Normalization: } \int_{-\infty}^{+\infty} f_{X}(x) \mathrm{d} x=1 \\
& \qquad P(a \leq X \leq b)=\int_{a}^{b} f_{X}(x) \mathrm{d} x
\end{aligned}
$$

Probability Density Function - Intuition

Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$

Probability Density Function - Intuition

Probability Density Function - Intuition

Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$

$$
\text { Normalization: } \int_{-\infty}^{+\infty} f_{X}(x) \mathrm{d} x=1
$$

$$
P(a \leq X \leq b)=\int_{a}^{b} f_{X}(x) \mathrm{d} x
$$

$$
P(X=y)=P(y \leq X \leq y)=\int_{y}^{y} f_{X}(x) \mathrm{d} x=0
$$

$$
P(X \approx y) \approx P\left(y-\frac{\epsilon}{2} \leq X \leq y+\frac{\epsilon}{2}\right)=\int_{y \frac{\epsilon}{2}}^{y+\frac{\epsilon}{2}} f_{X}(x) \mathrm{d} x \approx \epsilon f_{X}(y)
$$

$$
\frac{P(X \approx y)}{P(X \approx z)} \approx \frac{\in f_{X}(y)}{\in f_{X}(z)}=\frac{f_{X}(y)}{f_{X}(z)}
$$

Definition. A continuous random variable X is defined by a probability density function (PDF) $f_{X}: \mathbb{R} \rightarrow \mathbb{R}$, such that

Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$
Normalization: $\int_{-\infty}^{+\infty} f_{X}(x) \mathrm{d} x=1$
$P(a \leq X \leq b)=\int_{a}^{b} f_{X}(x) \mathrm{d} x$
$P(X=y)=P(y \leq X \leq y)=\int_{y}^{y} f_{X}(x) \mathrm{d} x=0$
$P(X \approx y) \approx P\left(y-\frac{\epsilon}{2} \leq X \leq y+\frac{\epsilon}{2}\right)=\int_{y-\frac{\epsilon}{2}}^{y+\frac{\epsilon}{2}} f_{X}(x) \mathrm{d} x \approx \epsilon f_{X}(y)$
$\frac{P(X \approx y)}{P(X \approx z)} \approx \frac{\epsilon f_{X}(y)}{\epsilon f_{X}(z)}=\frac{f_{X}(y)}{f_{X}(z)}$

$$
\left.F_{x} \cdot\right)^{2}
$$

PDF of Uniform RV

Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$

Probability of Event

$X \sim \operatorname{Unif}(0,1)$
Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$

PDF of Unifo
$X \sim \operatorname{Unif}(0,1)$

Unif $\left[0, \frac{1}{2}\right]$
$f_{X}(x)$

$$
\int_{-\infty}^{\infty} f_{x}(x) d x=1
$$

PDF of Uniform RV

$X \sim \operatorname{Unif}(0,0.5)$

Uniform Distribution
$X \sim \operatorname{Unif}(a, b)$

$$
f_{X}(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & x \in[a, b] \\
0 & \text { else }
\end{array}\right.
$$

Example. $T \sim \operatorname{Unif}(0,1)$
0

Probability Density Function

$$
f_{T}(x)= \begin{cases}1, & x \in[0,1] \\ 0, & x \notin[0,1]\end{cases}
$$

Cumulative Distribution Function

0

$$
F_{T}(x)=P(T \leq x)=\left\{\begin{array}{cc}
0 & x \leq 0 \\
1 & 0 \leq x \leq 1 \\
1 & 1 \leq x
\end{array}\right.
$$

Cumulative Distribution Function

Definition. The cumulative distribution function (cdf) of X is

$$
F_{X}(a)=\mathbb{P}(X \leq a)=\int_{-\infty}^{a} f_{X}(x) \mathrm{d} x
$$

By the fundamental theorem of Calculus $f_{X}(x)=\frac{d}{d x} F(x)$

Cumulative Distribution Function

Definition. The cumulative distribution function (cdf) of X is

$$
F_{X}(a)=\mathbb{P}(X \leq a)=\int_{-\infty}^{a} f_{X}(x) \mathrm{d} x
$$

COF
By the fundamental theorem of Calculus $f_{X}(x)=\frac{d}{d x} F(x)$
Therefore: $\mathbb{P}(X \in[a, b])=F(b)-F(a)$
F_{X} is monotone increasing, since $f_{X}(x) \geq 0$. That is $F_{X}(c) \leq F_{X}(d)$ for $c \leq d$
$\operatorname{Lim}_{a \rightarrow-\infty} F_{X}(a)=P(X \leq-\infty)=0 \quad \operatorname{Lim}_{a \rightarrow+\infty} F_{X}(a)=P(X \leq+\infty)=1$

From Discrete to Continuous

$$
P_{X}(x) \geqslant 0
$$

$f_{x}(x)$

	Discrete	Continuous
PMF/PDF	$p_{X}(x)=P(X=x)$	$f_{X}(x) \neq P(X=x)=0$
CDF	$F_{X}(x)=\sum_{t \leq x} p_{X}(t)$	$F_{X}(x)=\int_{-\infty}^{x} f_{X}(t) d t$
Normalization	$\sum_{x} p_{X}(x)=1$	$\int_{-\infty}^{\infty} f_{X}(x) d x=1$
Expectation	$\mathbb{E}[g(X)]=\sum_{x} g(x) p_{X}(x)$	$\mathbb{E}[g(X)]=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x$
LOTUS		

$$
\begin{aligned}
& \operatorname{Var}(x)=E\left(x^{2}\right)-[E(x))^{2} \\
& \int_{-\infty}^{\infty} x^{2} \frac{f^{\prime}(x)}{\rho d f} d x
\end{aligned}
$$

Expectation of a Continuous RV

$$
E(X)=\sum_{x \in J}^{P_{X}(x)}
$$

Definition. The expected value of a continuous RV X is defined as

$$
\mathbb{E}(X)=\int_{-\infty}^{+\infty} f_{X}(x)(x \mathrm{~d} x
$$

Fact. $\mathbb{E}(a X+b Y+c)=a \mathbb{E}(X)+b \mathbb{E}(Y)+c$

Definition. The variance of a continuous RV X is defined as

$$
\operatorname{Va}(X)=E\left((X-E(x))^{2}\right)
$$

Expectation of a Continuous RV
Example. $T \sim \operatorname{Unif}(0,1)$

$$
f_{T}(x)= \begin{cases}1, & x \in[0,1] \\ 0, & x \notin[0,1]\end{cases}
$$

Definition.

$$
\mathbb{E}(X)=\int_{-\infty}^{+\infty} f_{X}(x) \cdot x \mathrm{~d} x
$$

Uniform Distribution

We also say that X follows the uniform distribution / is

Uniform Density - Expectation

$$
X \sim \operatorname{Unif}(a, b)
$$

$$
f_{X}(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & x \in[a, b] \\
0 & \text { else }
\end{array}\right.
$$

$\mathbb{E}(X)=\int_{-\infty}^{+\infty} f_{X}(x) \cdot x \mathrm{~d} x$

Uniform Density - Expectation

$$
X \sim \operatorname{Unif}(a, b)
$$

$$
f_{X}(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & x \in[a, b] \\
0 & \text { else }
\end{array}\right.
$$

$$
\mathbb{E}(X)=\int_{-\infty}^{+\infty} f_{X}(x) \cdot x \mathrm{~d} x
$$

$$
=\frac{1}{b-a} \int_{a}^{b} x \mathrm{~d} x=\left.\frac{1}{b-a}\left(\frac{x^{2}}{2}\right)\right|_{a} ^{b}=\frac{1}{b-a}\left(\frac{b^{2}-a^{2}}{2}\right)
$$

$$
=\frac{(b-a)(a+b)}{2(b-a)}=\frac{a+b}{2}
$$

Uniform Density - Variance

$$
\begin{aligned}
& X \sim \operatorname{Unif}(a, b) \\
& \mathbb{E}\left(X^{2}\right)=\int_{-\infty}^{+\infty} f_{X}(x) \cdot x^{2} \mathrm{~d} x
\end{aligned}
$$

$$
f_{X}(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & x \in[a, b] \\
0 & \text { else }
\end{array}\right.
$$

$E\left(x^{2}\right)$

Uniform Density - Variance

$$
f_{X}(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & x \in[a, b] \\
0 & \text { else }
\end{array}\right.
$$

$$
\begin{aligned}
& X \sim \operatorname{Unif}(a, b) \\
& \begin{aligned}
\left.\mathbb{E}\left(X^{2}\right)=\int_{-\infty}^{+\infty} f_{X}(x) x^{2}\right) \mathrm{d} x
\end{aligned} \\
& =\frac{1}{b-a} \int_{a}^{b} x^{2} \mathrm{~d} x=\left.\frac{1}{b-a}\left(\frac{x^{3}}{3}\right)\right|_{a} ^{b}=\frac{b^{3}-a^{3}}{3(b-a)} \\
& =\frac{(b-a)\left(b^{2}+a b+a^{2}\right)}{3(b-a)}=\frac{b^{2}+a b+a^{2}}{3}
\end{aligned}
$$

Uniform Density - Variance

$$
\mathbb{E}\left(X^{2}\right)=\frac{b^{2}+a b+a^{2}}{3} \quad \mathbb{E}(X)=\frac{a+b}{2}
$$

$X \sim \operatorname{Unif}(a, b)$
$\operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2}$

$$
\begin{aligned}
& =\frac{b^{2}+a b+a^{2}}{3}-\frac{a^{2}+2 a b+b^{2}}{4} \\
& =\frac{4 b^{2}+4 a b+4 a^{2}}{12}-\frac{3 a^{2}+6 a b+3 b^{2}}{12}
\end{aligned}
$$

$$
=\frac{b^{2}-2 a b+a^{2}}{12}=\frac{(b-a)^{2}}{12}
$$

