CSE 312
 Foundations of Computing II

Lecture 13: The Poisson Distribution

w
PAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE \& ENGINEERING

Anna R. Karlin

Slide Credit: Based on Stefano Tessaro’s slides for 312 19au incorporating ideas from Alex Tsun, Rachel Lin, Hunter Schafer \& myself ©

Agenda

- Poisson Distribution
- Approximate Binomial distribution using Poisson distribution

Preview: Poisson

Model: \# events that occur in an hour

- Expect to see 3 events per hour (but will be random)
- The expected number of events in t hours, is $3 t$
- Occurrence of events on disjoint time intervals is independent

Example - Model cars passing through a certain town in 1 hour

$X=$ \# cars passing through a certain town in 1 hour

Divide 1 hour into n intervals each of length $1 / n$

https://pollev.com/ annakarlin185
What should p be?
Poll:
A. $3 / n$
B. $3 n$
C. 3
D. 3/60

Example - Model the process of cars passing through a light in 1 hour

$X=$ \# cars passing through a light in 1 hour
Know: $\mathbb{E}(X)=\lambda$ for some given $\lambda>0$
1 hour

Discretize problem: n intervals, each of length $\frac{1}{n}$.
In each interval, a car passes by with probability $\frac{\lambda}{n}$ (assume ≤ 1 car can pass by)
Bernoulli $X_{i}=1$ if car in i-th interval (0 otherwise). $\mathbb{P}\left(X_{i}=1\right)=\frac{\lambda}{n}$
$\begin{array}{ll}X=\sum_{i=1}^{n} X_{i} & X \sim \operatorname{Binomial}(\mathrm{n}, \mathrm{p}) \quad \mathbb{P}(X=i)=\binom{n}{i}^{n}\left(\frac{\lambda}{n}\right)^{i}\left(1-\frac{\lambda}{n}\right)^{n-i}, \\ & \text { indeed! } \mathbb{E}(X)=\lambda\end{array}$

Don't like discretization

We want now $n \rightarrow \infty$

$$
\begin{aligned}
& \mathbb{P}(X=i)=\binom{n}{i}\left(\frac{\lambda}{n}\right)^{i}\left(1-\frac{\lambda}{n}\right)^{n-i}=\frac{n!}{(n-i)!n^{i}} \frac{\lambda^{i}}{i!}\left(1-\frac{\lambda}{n}\right)^{n}\left(1-\frac{\lambda}{n}\right)^{-i} \\
& \rightarrow \mathbb{P}(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
\end{aligned}
$$

Poisson Distribution

- Suppose "events" happen, independently, at an average rate of λ per unit time.
- Let X be the actual number of events happening in a given time unit. Then X is a Poisson r.v. with parameter λ (denoted $X \sim \operatorname{Poi}(\lambda)$) and has distribution (PMF):

$$
\mathbb{P}(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

Several examples of "Poisson processes":

- \# of cars passing through a certain town in 1 hour
- \# of requests to web servers in a minute

Assume
fixed average rate

- \# of patients arriving to ER within an hour

Probability Mass Function

$$
\mathbb{P}(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

Validity of Distribution

$$
\mathbb{P}(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

We first want to verify that Poisson probabilities sum up to 1.

$$
\sum_{i=0}^{\infty} \mathbb{P}(X=i)=
$$

$$
\text { Fact. } \sum_{i=0}^{\infty} \frac{x^{i}}{i!}=e^{x}
$$

Validity of Distribution

$$
\mathbb{P}(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

We first want to verify that Poisson probabilities sum up to 1 .

$$
\sum_{i=0}^{\infty} \mathbb{P}(X=i)=e^{-\lambda} \underbrace{\sum_{i=0}^{\infty} \frac{\lambda^{i}}{i!}}=e^{-\lambda} e^{\lambda}=1
$$

Fact. $\sum_{i=0}^{\infty} \frac{x^{i}}{i!}=e^{x}$

Expectation

$$
\mathbb{P}(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

Theorem. If X is a Poisson RV with parameter λ, then

$$
\mathbb{E}(X)=\lambda
$$

Proof. $\mathbb{E}(X)=\sum_{i=0}^{\infty} i \cdot \mathbb{P}(X=i)$

Expectation

$$
\mathbb{P}(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

Theorem. If X is a Poisson RV with parameter λ, then

$$
\mathbb{E}(X)=\lambda
$$

Proof. $\quad \mathbb{E}(X)=\sum_{i=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{i!} \cdot i=\sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{(i-1)!}$

$$
\begin{aligned}
& =\lambda \sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i-1}}{(i-1)!} \\
& =\lambda \sum_{i=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}=\lambda \cdot 1=\lambda
\end{aligned}
$$

Variance

$$
\mathbb{P}(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

Theorem. If X is a Poisson RV with parameter λ, then $\operatorname{Var}(X)=\lambda$
Proof. $\mathbb{E}\left(X^{2}\right)=\sum_{i=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{i!} \cdot i^{2}=\lambda^{2}+\lambda$

$$
\operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2}=\lambda^{2}+\lambda-\lambda^{2}=\lambda
$$

Variance

$$
\mathbb{P}(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

Theorem. If X is a Poisson RV with parameter λ, then $\operatorname{Var}(X)=\lambda$
Proof. $\mathbb{E}\left(X^{2}\right)=\sum_{i=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{i!} \cdot i^{2}=\sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{(i-1)!} i$
$=\lambda \sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i-1}}{(i-1)!} \cdot i=\lambda \sum_{j=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{j}}{j!} \cdot(j+1)$
$=\lambda[\underbrace{\sum_{j=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{j}}{j!} \cdot j}+\underbrace{\sum_{j=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{j}}{j!}}]=\lambda^{2}+\lambda$ $=\mathbb{E}(X)=\lambda \quad=1 \quad$ Verify offline.

$$
\operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2}=\lambda^{2}+\lambda-\lambda^{2}=\lambda
$$

Poisson Random Variables

Definition. A Poisson random variable X with parameter $\lambda \geq 0$ is such that for all $i=0,1,2,3 \ldots$,

$$
\mathbb{P}(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

Poisson approximates Binomial when n is very large, p is very small, and λ
$=n p$ is "moderate" (e.g. $\mathrm{n}>20$ and $\mathrm{p}<0.05, \mathrm{n}>100$ and $\mathrm{p}<0.1$)
Formally, Binomial is Poisson in the limit as
$\mathrm{n} \rightarrow \infty$ (equivalently, $\mathrm{p} \rightarrow 0$) while holding $\mathrm{np}=\lambda$

From Binomial to Poisson

$$
\begin{array}{cl}
\begin{array}{c}
n \rightarrow \infty \\
n p=\lambda
\end{array} & \\
p=\frac{\lambda}{n} \rightarrow 0
\end{array} \quad \begin{array}{ll}
& \\
& P(X=k)=e^{-\lambda} \cdot \frac{\lambda^{k}}{k!} \\
& E[X]=\lambda \\
& \operatorname{Var}(X)=\lambda
\end{array}
$$

Probability Mass Function - Convergence of Binomials

$$
\begin{aligned}
& \lambda=5 \\
& p=\frac{5}{n} \\
& n=10,15,20
\end{aligned}
$$

Example -- Approximate Binomial Using Poisson

Consider sending bit string over a network

- Send bit string of length $\mathrm{n}=1 \mathbf{1 0}^{4}$
- Probability of (independent) bit corruption is $p=10^{-6}$
- What is probability that message arrives uncorrupted?

Using $\mathrm{Y} \sim \operatorname{Bin}\left(10^{4}, 10^{-6}\right)$

$$
\mathbb{P}(Y=0)
$$

Using $X \sim \operatorname{Poi}\left(\lambda=n p=10^{4} \bullet 10^{-6}=0.01\right)$

$$
\mathbb{P}(X=0)
$$

Example -- Approximate Binomial Using Poisson

Consider sending bit string over a network

- Send bit string of length $\mathrm{n}=10^{4}$
- Probability of (independent) bit corruption is $p=10^{-6}$
- What is probability that message arrives uncorrupted?

Using $\mathrm{Y} \sim \operatorname{Bin}\left(10^{4}, 10^{-6}\right)$
$\mathbb{P}(Y=0) \approx 0.990049829$
Using $X \sim \operatorname{Poi}\left(\lambda=n p=10^{4} \bullet 10^{-6}=0.01\right)$

$$
\mathbb{P}(X=0)=e^{-\lambda} \cdot \frac{\lambda^{0}}{0!}=e^{-0.01} \cdot \frac{0.01^{0}}{0!}=0.990049834
$$

Sum of Independent Poisson RVs

Theorem. Let $X \sim \operatorname{Poi}\left(\lambda_{1}\right)$ and $Y \sim \operatorname{Poi}\left(\lambda_{2}\right)$ such that $\lambda=\lambda_{1}+\lambda_{2}$.
Let $\mathrm{Z}=(X+Y)$. For all $k=0,1,2,3 \ldots$,

$$
\mathbb{P}(Z=k)=e^{-\lambda} \cdot \frac{\lambda^{k}}{k!}
$$

More generally, let $X_{1} \sim \operatorname{Poi}\left(\lambda_{1}\right), \cdots, X_{n} \sim \operatorname{Poi}\left(\lambda_{n}\right)$ such that $\lambda=\Sigma_{i} \lambda_{i}$. Let $\mathrm{Z}=\Sigma_{i} X_{i}$

$$
\mathbb{P}(Z=k)=e^{-\lambda} \cdot \frac{\lambda^{k}}{k!}
$$

Sum of Independent Poisson RVs

Theorem. Let $X \sim \operatorname{Poi}\left(\lambda_{1}\right)$ and $Y \sim \operatorname{Poi}\left(\lambda_{2}\right)$ such that $\lambda=\lambda_{1}+\lambda_{2}$.
Let $\mathrm{Z}=(X+Y)$. For all $k=0,1,2,3 \ldots$,

$$
\mathbb{P}(Z=k)=e^{-\lambda} \cdot \frac{\lambda^{k}}{k!}
$$

https://pollev.com/ annakarlin185

$$
\begin{aligned}
& \mathbb{P}(Z=k)=? \\
& \text { 1. } \mathbb{P}(Z=k)=\sum_{j=0}^{k} \mathbb{P}(X=j, Y=k-j) \\
& \text { 2. } \mathbb{P}(Z=k)=\sum_{j=0}^{\infty} \mathbb{P}(X=j, Y=k-j) \\
& \text { 3. } \mathbb{P}(Z=k)=\sum_{j=0}^{k} \mathbb{P}(Y=k-j \mid X=j) \mathbb{P}(X=j) \\
& \text { 4. } \mathbb{P}(Z=k)=\sum_{j=0}^{k} \mathbb{P}(Y=k-j \mid X=j)
\end{aligned}
$$

Poll:
A. All of them are right
B. The first 3 are right
C. Only 1 is right
D. Don't know

1. $\mathbb{P}(Z=k)=\sum_{j=0}^{k} \mathbb{P}(X=j, Y=k-j)$
2. $\mathbb{P}(Z=k)=\sum_{j=0}^{\infty} \mathbb{P}(X=j, Y=k-j)$
3. $\mathbb{P}(Z=k)=\sum_{j=0}^{k} \mathbb{P}(Y=k-j \mid X=j) \mathbb{P}(X=j)$
4. $\mathbb{P}(Z=k)=\sum_{j=0}^{k} \mathbb{P}(Y=k-j \mid X=j)$

$$
\begin{aligned}
& \mathbb{P}(Z=k)=\sum_{j=0}^{k} \mathbb{P}(X=j, Y=k-j) \\
= & \sum_{j=0}^{k} \mathbb{P}(X=j) \mathbb{P}(Y=k-j)
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{P}(Z=z)=\sum_{j=0}^{k} \mathbb{P}(X=j, Y=z-j) \quad \text { Law of total probability } \\
&= \sum_{j=0}^{k} \mathbb{P}(X=j) \mathbb{P}(Y=z-j)=\Sigma_{j=0}^{k} e^{-\lambda_{1}} \cdot \frac{\lambda_{1}^{j}}{j!} \cdot e^{-\lambda_{2}} \cdot \frac{\lambda_{2}^{z-j}}{z-j!} \quad \text { Independence } \\
&= e^{-\lambda}\left(\sum_{j=0}^{k} \cdot \frac{1}{j!z-j!} \cdot \lambda_{1}^{j} \lambda_{2}^{z-j}\right) \\
&= e^{-\lambda}\left(\sum_{j=0}^{k} \frac{z!}{j!z-j!} \cdot \lambda_{1}^{j} \lambda_{2}^{z-j}\right) \frac{1}{z!} \quad \\
&= e^{-\lambda} \cdot\left(\lambda_{1}+\lambda_{2}\right)^{z} \cdot \frac{1}{z!}=e^{-\lambda} \cdot \lambda^{z} \cdot \frac{1}{z!} \quad \\
& \quad \begin{array}{ll}
\text { Binomial } & \text { Theorem }
\end{array}
\end{aligned}
$$

Poisson Random Variables

Definition. A Poisson random variable X with parameter $\lambda \geq 0$ is such that for all $i=0,1,2,3 \ldots$,

$$
\mathbb{P}(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

General principle:

- Events happen at an average rate of λ per time unit
- Number of events happening at a time unit X is distributed according to $\operatorname{Poi}(\lambda)$
- Poisson approximates Binomial when n is large, p is small, and np is moderate
- Sum of independent Poisson is still a Poisson

Next Time

- Continuous Random Variables
- Probability Density Function
- Cumulative Density Function

Often we want to model experiments where the outcome is not discrete.

Example - Lightning Strike

Lightning strikes a pole within a one-minute time frame

- T = time of lightning strike
- Every time within $[0,1]$ is equally likely
- Time measured with infinitesimal precision.

The outcome space is not discrete

Lightning strikes a pole within a one-minute time frame

- T = time of lightning strike
- Every point in time within $[0,1]$ is equally likely

Lightning strikes a pole within a one-minute time frame

- T = time of lightning strike
- Every point in time within $[0,1]$ is equally likely

$\mathbb{P}(0.2 \leq T \leq 0.5)=$

Lightning strikes a pole within a one-minute time frame

- T = time of lightning strike
- Every point in time within $[0,1]$ is equally likely

Bottom line

- This gives rise to a different type of random variable
- $\mathbb{P}(T=x)=0$ for all $x \in[0,1]$
- Yet, somehow we want
$-\mathbb{P}(T \in[0,1])=1$
$-\mathbb{P}(T \in[a, b])=b-a$
- ...
- How do we model the behavior of T ?

