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Agenda

• Poisson Distribution
• Approximate Binomial distribution using Poisson distribution 
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Preview: Poisson

Model: # events that occur in an hour
– Expect to see 3 events per hour (but will be random)
– The expected number of events in t hours, is 3t
– Occurrence of events on disjoint time intervals is independent
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! = # cars passing through a certain town in 1 hour

Example – Model cars passing through a certain town in 1 hour
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Divide 1 hour into ! intervals each of length 1/!
1/B

What should p be?
Poll:  
A. 3/n
B. 3n
C.   3
D. 3/60
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Example – Model the process of cars passing through a light in 1 hour

! = # cars passing through a light in 1 hour
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Know: # ! = % for some given % > 0
1 hour

Discretize problem: ! intervals, each of length FG . 

In each interval, a car passes by with probability HG (assume ≤ 1 car can pass by)

Bernoulli $I = 1 if car in &-th interval (0 otherwise). ℙ($I = 1) = H
G

! = ∑$%&' !$
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Don’t like discretization
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Poisson Distribution

• Suppose “events” happen, independently, at an average rate of λ per 
unit time.

• Let X be the actual number of events happening in a given time 
unit. Then X is a Poisson r.v. with parameter λ (denoted X ~ Poi(λ)) 
and has distribution (PMF):
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ℙ # = % = &!" ⋅ "
!

#!

Several examples of “Poisson processes”:
• # of cars passing through a certain town in 1 hour
• # of requests to web servers in a minute
• # of photons hitting a light detector in a given interval
• # of patients arriving to ER within an hour

Siméon Denis Poisson
1781-1840

Assume 
fixed average rate



Probability Mass Function 
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This Photo by Unknown Author is licensed 
under CC BY-NC

https://futurism.com/meet-axolotl-mexican-walking-fish
https://creativecommons.org/licenses/by-nc/3.0/


Validity of Distribution

We first want to verify that Poisson probabilities sum up to 1.
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Validity of Distribution

We first want to verify that Poisson probabilities sum up to 1.
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Expectation
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Theorem. If ! is a Poisson RV with parameter %, then
#(!) = %
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Expectation
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Theorem. If ! is a Poisson RV with parameter %, then
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Variance

15

Theorem. If ! is a Poisson RV with parameter %, then Var(!) = %
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Variance
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Theorem. If ! is a Poisson RV with parameter %, then Var(!) = %
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Verify offline. 
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This Photo by Unknown Author 
is licensed under CC BY-SA

https://en.wikipedia.org/wiki/Bao_Bao
https://creativecommons.org/licenses/by-sa/3.0/


Poisson Random Variables
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Definition. A Poisson random variable ! with parameter % ≥ 0 is such 
that for all + = 0,1,2,3…,

ℙ ! = + = 4)( ⋅ (
!

$!

This Photo by Unknown Author is licensed 
under CC BY-NC

Poisson approximates Binomial when n is very large, p is very small, and λ 
= np is “moderate” (e.g. n > 20 and p < 0.05,   n > 100 and p < 0.1)

Formally, Binomial is Poisson in the limit as 
n → ∞ (equivalently, p → 0) while holding np = λ

nad 3

p

https://futurism.com/meet-axolotl-mexican-walking-fish
https://creativecommons.org/licenses/by-nc/3.0/


From Binomial to Poisson
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Probability Mass Function – Convergence of Binomials
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Example -- Approximate Binomial Using Poisson 

Consider sending bit string over a network
• Send bit string of length n = 104

• Probability of (independent) bit corruption is p = 10-6

• What is probability that message arrives uncorrupted?
Using Y ~ Bin(104, 10-6)

ℙ() = 0)

Using X ~ Poi(λ = np = 104•10-6 = 0.01)

21ℙ ! = 0
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Example -- Approximate Binomial Using Poisson 

Consider sending bit string over a network
• Send bit string of length n = 104

• Probability of (independent) bit corruption is p = 10-6

• What is probability that message arrives uncorrupted?
Using Y ~ Bin(104, 10-6)

ℙ() = 0) ≈ 0.990049829
Using X ~ Poi(λ = np = 104•10-6 = 0.01)
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http://redpandazine.com/2016/01/28/red-panda-pet/
https://creativecommons.org/licenses/by-nc-sa/3.0/


Sum of Independent Poisson RVs 
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Theorem. Let !~?J+(%&) and K~?J+(%3) such that % = %& + %3. 
Let Z = ! + K . For all @ = 0,1,2,3…,

ℙ M = @ = 4)( ⋅ (
"
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More generally, let !&~?J+ %& , ⋯ , !'~?J+(%') such that % = Σ$%$. 
Let Z = Σ$!$
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Sum of Independent Poisson RVs 
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Theorem. Let !~?J+(%&) and K~?J+(%3) such that % = %& + %3. 
Let Z = ! + K . For all @ = 0,1,2,3…,

ℙ M = @ = 4)( ⋅ %
4

@!

ℙ 2 = 3 = ?
1. ℙ M = @ = Σ6%/4 ℙ ! = P, K = @ − P
2. ℙ M = @ = Σ6%/0 ℙ ! = P, K = @ − P
3. ℙ M = @ = Σ6%/4 ℙ K = @ − P|! = P ℙ(! = P)
4. ℙ M = @ = Σ6%/4 ℙ K = @ − P|! = P

Poll:  
A. All of them are right 
B. The first 3 are right 
C. Only 1 is right
D. Don’t know 

https://pollev.com/ annakarlin185
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1. ℙ M = @ = Σ6%/4 ℙ ! = P, K = @ − P
2. ℙ M = @ = Σ6%/0 ℙ ! = P, K = @ − P
3. ℙ M = @ = Σ6%/4 ℙ K = @ − P|! = P ℙ(! = P)
4. ℙ M = @ = Σ6%/4 ℙ K = @ − P|! = P
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ℙ M = @ = Σ6%/4 ℙ ! = P, K = @ − P

= Σ6%/4 ℙ ! = P)ℙ(K = @ − P

Law of total probability

Independence
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ℙ M = R = Σ6%/4 ℙ ! = P, K = R − P

= Σ6%/4 ℙ ! = P)ℙ(K = R − P = Σ6%/4 4)(# ⋅ %&
6

P! ⋅ 4
)($ ⋅ %3

7)6

R − P!
= 4)( Σ6%/4 ⋅ 1

P! R − P! ⋅ %&
6%37)6

= 4)( Σ6%/4 R!
P! R − P! ⋅ %&

6%37)6
1
R!

= 4)( ⋅ %& + %3 7 ⋅ &7! = 4
)( ⋅ %7 ⋅ &7!

Law of total probability

Independence

Binomial 
Theorem



29

General principle: 
• Events happen at an average rate 

of , per time unit 
• Number of events happening at a 

time unit X is distributed 
according to Poi(,) 

Definition. A Poisson random variable ! with parameter % ≥ 0 is such 
that for all + = 0,1,2,3…,

ℙ ! = + = 4)( ⋅ (
!

$!

• Poisson approximates Binomial when n is large, 
p is small, and np is moderate

• Sum of independent Poisson is still a Poisson

Poisson Random Variables



Next Time

• Continuous Random Variables
• Probability Density Function 
• Cumulative Density Function
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Often we want to model experiments where the outcome is 
not discrete.


