ESE 312

Foundations of Computing II

Lecture 13: The Poisson Distribution

wPAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE \& ENGINEERING

Anna R. Marlin

Slide Credit: Based on Stefano Tessaro's slides for 312 19au incorporating ideas from Alex Thun, Rachel Lin, Hunter Schafer \& myself ©

$$
\text { Quiz 2: } \begin{aligned}
& \text { ont Nov } 8 \text { bpm } \\
& \text { due Nov } 9 \text { llis9pm }
\end{aligned}
$$

$$
\begin{aligned}
& X \sim \operatorname{Unif}(a, b) \\
& P(X=k)=\frac{1}{b-a+1} \\
& E[X]=\frac{a+b}{2} \\
& \operatorname{Var}(X)=\frac{(b-a)(b-a+2)}{12}
\end{aligned}
$$

$X \sim \operatorname{Geo}(p)$

$P(X=k)=(1-p)^{k-1} p$
$E[X]=\frac{1}{p}$
$\operatorname{Var}(X)=\frac{1-p}{p^{2}}$

$$
X \sim \operatorname{Ber}(p)
$$

$$
P(X=1)=p, P(X=0)=1-p
$$

$$
E[X]=p
$$

$$
\operatorname{Var}(X)=p(1-p)
$$

$$
\begin{gathered}
X \sim \operatorname{NegBin}(r, p) \\
P(X=k)=\binom{k-1}{r-1} p^{r}(1-p)^{k-r} \\
E[X]=\frac{r}{p} \\
\operatorname{Var}(X)=\frac{r(1-p)}{p^{2}}
\end{gathered}
$$

$X \sim \operatorname{Bin}(n, p)$

$$
\begin{aligned}
& P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \\
& E[X]=n p \\
& \operatorname{Var}(X)=n p(1-p)
\end{aligned}
$$

$$
X \sim \operatorname{HypGeo}(N, K, n)
$$

$$
P(X=k)=\frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}
$$

$$
E[X]=n \frac{K}{N}
$$

$$
\operatorname{Var}(X)=n \frac{K(N-K)(N-n)}{N^{2}(N-1)}
$$

Agenda

- Poisson Distribution
- Approximate Binomial distribution using Poisson distribution

Preview: Poisson

Model: \# events that occur in an hour

- Expect to see 3 events per hour (but will be random)
- The expected number of events in t hours, is $3 t$
- Occurrence of events on disjoint time intervals is independent

Example - Model cars passing through a certain town in 1 hour
$X=$ \# cars passing through a certain town in 1 hour
$\frac{1}{2}$ hor $\operatorname{Bin}\left(\frac{n}{2}, \frac{3}{n}\right)=$

$$
\frac{n}{3} \cdot \frac{3}{n}=1
$$

$E_{\text {\#hen }}=\frac{3}{2}$
t haws

Y : \#events in hair
(y) $\sim \operatorname{Bin}(n, p)$

Bin

$$
E(x)=n p=3
$$

https://pollev.com/ annakarlin185
What should p be?
Poll:
A. $3 / \mathrm{n}$
B. $3 n$
C. 3
D. 3/60
take limit as $n \rightarrow \infty$

$$
\operatorname{Bin}\left(n, \frac{3}{n}\right) \longrightarrow y_{\text {limiting riv. }}^{n i t}
$$

$$
\begin{aligned}
& \operatorname{Pr}(X=0)=\lim _{n \rightarrow \infty} \operatorname{Pr}(y=0) \quad \lim _{x \rightarrow 0} \quad 1-x \approx e^{-x} \\
& =\lim _{n \rightarrow \infty}\left(\begin{array}{c}
\left.1-\frac{3}{n}\right)^{n} x_{n}^{n} 1-x \rightarrow e^{-x} \quad e^{-x}=1-x+\frac{x^{2}}{2}-\frac{x^{3}}{3!}
\end{array}\right. \\
& =\left(e^{-\frac{3}{n}}\right)^{n}=e^{-3} \\
& \operatorname{Pr}(x=1)=\lim _{n \rightarrow \infty} \operatorname{Pr}(y=1) \\
& =\lim _{n \rightarrow \infty} \frac{\binom{n}{1} \frac{3}{n}\left(1-\frac{3}{n}\right)^{n-1}}{n \cdot \frac{3}{x}} \frac{\left(1-\frac{3}{n}\right)^{2}}{\left(1-\frac{3}{n}\right)}, \\
& \operatorname{Pr}(x=k)=\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\begin{array}{l}
(y=k) \\
\left(\begin{array}{l}
k
\end{array}\right)\left(\frac{3}{n}\right)^{k}\left(1-\frac{3}{n}\right)^{n-k}
\end{array}\right.
\end{aligned}
$$

Example - Model the process of cars passing through a light in 1 hour

$X=$ \# cars passing through a light in 1 hour
Know: $\mathbb{E}(X)=\lambda$ for some given $\lambda>0$
1 hour

Discretize problem: n intervals, each of length $\frac{1}{n}$.
In each interval, a car passes by with probability $\frac{\lambda}{n}$ (assume ≤ 1 car can pass by)
Bernoulli $X_{i}=1$ if car in i-th interval (0 otherwise). $\mathbb{P}\left(X_{i}=1\right)=\frac{\lambda}{n}$
$\begin{array}{ll}X=\sum_{i=1}^{n} X_{i} & X \sim \operatorname{Binomial}(\mathrm{n}, \mathrm{p}) \quad \mathbb{P}(X=i)=\binom{n}{i}^{n}\left(\frac{\lambda}{n}\right)^{i}\left(1-\frac{\lambda}{n}\right)^{n-i} \\ & \text { indeed! } \mathbb{E}(X)=\lambda\end{array}$

Don't like discretization

We want now $n \rightarrow \infty$

$$
\begin{aligned}
& \mathbb{P}(X=i)=\binom{n}{i}\left(\frac{\lambda}{n}\right)^{i}\left(1-\frac{\lambda}{n}\right)^{n-i}=\underbrace{\frac{n!}{(n-i)!n^{i}} \frac{\lambda^{i}}{i!}}_{\rightarrow 1} \underbrace{\left(1-\frac{\lambda}{n}\right)^{n}}_{\rightarrow e^{-\lambda}} \underbrace{\left(1-\frac{\lambda}{n}\right)^{-i}}_{\rightarrow 1} \\
& \lambda=3 \\
& i=1 e^{-\lambda} \lambda
\end{aligned}
$$

Poisson Distribution

- Suppose "events" happen, independently, at an average rate of λ per unit time.
- Let X be the actual number of events happening in a given time unit. Then X is a Poisson r.v. with parameter λ (denoted $X \sim \operatorname{Poi}(\lambda)$) and has distribution (PMF):

Several examples of "Poisson processes":

- \# of cars passing through a certain town in 1 hour
- \# of requests to web servers in a minute

Assume

- \# of photons hitting a light detector in a given interval fixed average rate
- \# of patients arriving to ER within an hour

Probability Mass Function

$$
\mathbb{P}(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

Validity of Distribution

$$
\mathbb{P}(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

We first want to verify that Poisson probabilities sum up to 1 .

$$
\begin{gathered}
\sum_{i=0}^{\infty} \mathbb{P}(X=i)=\sum_{i=0}^{\infty} e^{-\lambda} \frac{\lambda^{i}}{i!}=e^{-\lambda} \sum_{i=0}^{\infty} \frac{\sum_{i}^{\infty}}{i!}=e^{-\lambda} e^{\lambda}=1 \\
\text { Fact. } \sum_{i=0}^{\infty} \frac{x^{i}}{i!}=e^{x}
\end{gathered}
$$

Validity of Distribution

$$
\mathbb{P}(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

We first want to verify that Poisson probabilities sum up to 1 .

Fact. $\sum_{i=0}^{\infty} \frac{x^{i}}{i!}=e^{x}$

Expectation

$$
\mathbb{P}(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

Theorem. If X is a Poisson RV with parameter λ, then

$$
\mathbb{E}(X)=\lambda
$$

Proof.

Fact. $\sum_{i=0}^{\infty} \frac{x^{i}}{i!}=e^{x}$

Expectation

$$
\mathbb{P}(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

Theorem. If X is a Poisson RV with parameter λ, then

$$
\mathbb{E}(X)=\lambda
$$

Proof. $\quad \mathbb{E}(X)=\sum_{i=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{i!} \cdot i=\sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{(i-1)!}$

$$
\begin{aligned}
& =\lambda \sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i-1}}{(i-1)!} \\
& =\lambda \sum_{i=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}=\lambda \cdot 1=\lambda
\end{aligned}
$$

$V_{a}(x)=E(x)-[E(x)]^{2}$

Variance

$$
\mathbb{P}(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

Theorem. If X is a Poisson RV with parameter λ, then $\operatorname{Var}(X)=\lambda$
Proof. $\mathbb{E}\left(X^{2}\right)=\sum_{i=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{i!} \cdot i^{2}=\lambda^{2}+\lambda$

Variance

$$
\mathbb{P}(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

Theorem. If X is a Poisson RV with parameter λ, then $\operatorname{Var}(X)=\lambda$
Proof. $\mathbb{E}\left(X^{2}\right)=\sum_{i=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{i!} \cdot i^{2}=\sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{(i-1)!} i$
$=\lambda \sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i-1}}{(i-1)!} \cdot i=\lambda \sum_{j=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{j}}{j!} \cdot(j+1)$
$=\lambda[\underbrace{\sum_{j=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{j}}{j!} \cdot j}+\underbrace{\sum_{j=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{j}}{j!}}]=\lambda^{2}+\lambda$
Similar to the previous proof
Verify offline.

$$
\operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2}=\lambda^{2}+\lambda-\lambda^{2}=\lambda
$$

Poisson Random Variables

3

Definition. A Poisson random variable X with parameter $\lambda \geq 0$ is such that for all $i=0,1,2,3 \ldots$,

$$
\mathbb{P}(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

Poisson approximates Binomial when n is very large, p is very small, and λ np1s "moderate" (e.g. $p>20$ and $p<0.05, n>100$ and $p<0.1$)
Formally, Binomial is Poisson in the limit as
$\mathrm{n} \rightarrow \infty$ (equivalently, $\mathrm{p} \rightarrow 0$) while holding $n \mathrm{p}=\lambda$

From Binomial to Poisson

$n \rightarrow \infty$

$X \sim \operatorname{Poisson}(\lambda)$
$P(X=k)=e^{-\lambda} \cdot \frac{\lambda^{k}}{k!}$
$E[X]=\lambda$
$\operatorname{Var}(X)=\lambda$

Probability Mass Function - Convergence of Binomials

$\lambda=5$
$p=\frac{5}{n}$
$n=10,15,20$

as $n \rightarrow \infty$, Binomial $(n, p=\lambda / n) \rightarrow \operatorname{poi}(\lambda)$

Example -- Approximate Binomial Using Poisson

Consider sending bit string over a network

- Send bit string of length $\mathrm{n}=1 \mathbf{1 0}^{4}$
- Probability of (independent) bit corruption is $p=10^{-6}$

- What is probability that message arrives uncorrupted?

Using $\mathrm{Y} \sim \operatorname{Bin}\left(10^{4}, 10^{-6}\right)$

$$
\mathbb{P}(Y=0)=
$$

Using $X \sim \operatorname{Poi}\left(\lambda=n p=10^{4} \cdot 10^{-6}=0.01\right)$

$$
\mathbb{P}(X=0)=e
$$

Example -- Approximate Binomial Using Poisson

Consider sending bit string over a network

- Send bit string of length $n=10^{4}$
- Probability of (independent) bit corruption is $p=10^{-6}$
- What is probability that message arrives uncorrupted?

Using $\mathrm{Y} \sim \operatorname{Bin}\left(10^{4}, 10^{-6}\right)$

$$
\mathbb{P}(Y=0) \approx 0.990049829
$$

Using $X \sim \operatorname{Poi}\left(\lambda=n p=10^{4} \bullet 10^{-6}=0.01\right)$

$$
\mathbb{P}(X=0)=e^{-\lambda} \cdot \frac{\lambda^{0}}{0!}=e^{-0.01} \cdot \frac{0.01^{0}}{0!}=0.9900498 \beta 4
$$

Sum of Independent Poisson RVs

Theorem. Let $X \sim \operatorname{Poi}\left(\lambda_{1}\right)$ and $Y \sim \operatorname{Poi}\left(\lambda_{2}\right)$ such that $\lambda=\lambda_{1}+\lambda_{2}$. Let $\mathrm{Z}=(X+Y)$. For all $k=0,1,2,3 \ldots$,

$$
\mathbb{P}(Z=k)=e^{-\lambda} \cdot \frac{\lambda^{k}}{k!}
$$

More generally, let $X_{1} \sim \operatorname{Poi}\left(\lambda_{1}\right), \cdots, X_{n} \sim \operatorname{Poi}\left(\lambda_{n}\right)$ such that $\lambda=\Sigma_{i} \lambda_{i}$. Let $\mathrm{Z}=\Sigma_{i} X_{i}$

$$
\mathbb{P}(Z=k)=e^{-\lambda} \cdot \frac{\lambda^{k}}{k!}
$$

Sum of Independent Poisson RVs

Theorem. Let $X \sim \operatorname{Poi}\left(\lambda_{1}\right)$ and $Y \sim \operatorname{Poi}\left(\lambda_{2}\right)$ such that $\lambda=\lambda_{1}+\lambda_{2}$.
Let $\mathrm{Z}=(X+Y)$. For all $k=0,1,2,3 \ldots$,

$$
\mathbb{P}(Z=k)=e^{-\lambda} \cdot \frac{\lambda^{k}}{k!}
$$

https://pollev.com/ annakarlin185

$$
\mathbb{P}(Z=k)=? \quad 1 \quad 0 \quad 1 \quad k
$$

1. $\mathbb{P}(Z=k)=\sum_{j=0}^{k} \mathbb{P}(X=j, Y=k-j)$
2. $\mathbb{P}(Z=k)=\sum_{j=0}^{\infty} \mathbb{P}(X=j, Y=k-j)$
3. $\mathbb{P}(Z=k)=\sum_{j=0}^{k} \mathbb{P}(Y=k-j \mid X=j) \mathbb{P}(X=j)$
4. $\mathbb{P}(Z=k)=\sum_{j=0}^{k} \mathbb{P}(Y=k-j \mid X=j)$

Poll:

A. All of them are right
B. The first 3 are right
C. Only 1 Is right
D. Don't know

1. $\mathbb{P}(Z=k)=\sum_{j=0}^{k} \mathbb{P}(X=j, Y=k-j)$
2. $\mathbb{P}(Z=k)=\sum_{j=0}^{\infty} \mathbb{P}(X=j, Y=k-j)$
3. $\mathbb{P}(Z=k)=\sum_{j=0}^{k} \mathbb{P}(Y=k-j \mid X=j) \mathbb{P}(X=j)$
4. $\mathbb{P}(Z=k)=\sum_{j=0}^{k} \mathbb{P}(Y=k-j \mid X=j)$

$$
\begin{aligned}
& \mathbb{P}(Z=k)=\sum_{j=0}^{k} \mathbb{P}(X=j, Y=k-j) \\
& \text { Law of total probability } \\
& =\sum_{j=0}^{k} \mathbb{P}(X=j) \mathbb{P}(Y=k-j) \\
& =\sum_{j=0}^{k} e^{-\lambda_{1}} \frac{\lambda_{1}^{j}}{j!} e^{-\lambda_{2}} \frac{\lambda_{2}}{(k-j)!} \\
& =\frac{e^{-\left(\lambda_{1}+\lambda_{2}\right)}}{k!} \sum_{j=0}^{k}\left(\frac{k!}{j!(k-j)!\lambda^{(j)} \lambda_{2}^{(k-1)}}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { Bramial Tia } \\
& \text { for Poisson }\left(\lambda_{1}+\lambda_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{P}(Z=z)=\sum_{j=0}^{k} \mathbb{P}(X=j, Y=z-j) \quad \text { Law of total probability } \\
&= \sum_{j=0}^{k} \mathbb{P}(X=j) \mathbb{P}(Y=z-j)=\Sigma_{j=0}^{k} e^{-\lambda_{1}} \cdot \frac{\lambda_{1}^{j}}{j!} \cdot e^{-\lambda_{2}} \cdot \frac{\lambda_{2}^{z-j}}{z-j!} \quad \text { Independence } \\
&= e^{-\lambda}\left(\sum_{j=0}^{k} \cdot \frac{1}{j!z-j!} \cdot \lambda_{1}^{j} \lambda_{2}^{z-j}\right) \\
&= e^{-\lambda}\left(\sum_{j=0}^{k} \frac{z!}{j!z-j!} \cdot \lambda_{1}^{j} \lambda_{2}^{z-j}\right) \frac{1}{z!} \quad \\
&= e^{-\lambda} \cdot\left(\lambda_{1}+\lambda_{2}\right)^{z} \cdot \frac{1}{z!}=e^{-\lambda} \cdot \lambda^{z} \cdot \frac{1}{z!} \quad \\
& \quad \text { Binomial } \\
& \text { Theorem }
\end{aligned}
$$

Poisson Random Variables

Definition. A Poisson random variable X with parameter $\lambda \geq 0$ is such that for all $i=0,1,2,3 \ldots$,

$$
\mathbb{P}(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

General principle:

- Events happen at an average rate of λ per time unit
- Number of events happening at a time unit X is distributed according to $\operatorname{Poi}(\lambda)$
- Poisson approximates Binomial when n is large, p is small, and np is moderate
- Sum of independent Poisson is still a Poisson

Next Time

- Continuous Random Variables
- Probability Density Function
- Cumulative Density Function

Often we want to model experiments where the outcome is not discrete.

