## CSE 312 <br> Foundations of Computing II

## Lecture 12: Zoo of Discrete RVs

w
PAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE \& ENGINEERING

## Anna R. Karlin

Slide Credit: Based on Stefano Tessaro’s slides for 312 19au incorporating ideas from Alex Tsun, Rachel Lin, Hunter Schafer \& myself ©

## Motivation: "Named" Random Variables

Random Variables that show up all over the place.

- Easily solve a problem by recognizing it's a special case of one of these random variables.

Each RV introduced today will show:

- A general situation it models
- Its name and parameters
- Its PMF, Expectation, and Variance
- Example scenarios you can use it


## 

$$
\begin{gathered}
X \sim \operatorname{Unif}(a, b) \\
P(X=k)=\frac{1}{b-a+1} \\
E[X]=\frac{a+b}{2} \\
\operatorname{Var}(X)=\frac{(b-a)(b-a+2)}{12}
\end{gathered}
$$

$X \sim \operatorname{Ber}(p)$
$P(X=1)=p, P(X=0)=1-p$
$E[X]=p$
$\operatorname{Var}(X)=p(1-p)$

## $X \sim \operatorname{Bin}(n, p)$

$$
\begin{aligned}
& P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \\
& E[X]=n p \\
& \operatorname{Var}(X)=n p(1-p)
\end{aligned}
$$

$$
\begin{gathered}
X \sim \operatorname{HypGeo}(N, K, n) \\
P(X=k)=\frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}} \\
E[X]=n \frac{K}{N} \\
\operatorname{Var}(X)=n \frac{K(N-K)(N-n)}{N^{2}(N-1)}
\end{gathered}
$$

## Agenda

- Discrete Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Geometric Random Variables
- Applications


## Discrete Uniform Random Variables

A discrete random variable $X$ equally likely to take any (int.) value between integers $a$ and $b$ (inclusive), is uniform.

Notation:
PMF:

## Expectation:

Variance:

Example: value shown on one roll of a fair die

## Discrete Uniform Random Variables

A discrete random variable $X$ equally likely to take any (int.) value between integers $a$ and $b$ (inclusive), is uniform.

Notation: $X \sim \operatorname{Unif}(a, b)$
PMF: $\operatorname{Pr}(X=i)=\frac{1}{b-a+1}$
Expectation: $\mathrm{E}[X]=\frac{a+b}{2}$
Variance: $\operatorname{Var}(X)=\frac{(b-a)(b-a+2)}{12}$

Example: value shown on one roll of a fair die is Unif( 1,6 ):

- $\operatorname{Pr}(X=i)=1 / 6$
- $E[X]=7 / 2$
- $\operatorname{Var}(X)=35 / 12$



## Agenda

- Discrete Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Geometric Random Variables
- Applications


## Bernoulli Random Variables

A random variable $X$ that takes value 1 ("Success") with probability $p$, and 0 ("Failure") otherwise. $X$ is called a Bernoulli random variable.
Notation: $X \sim \operatorname{Ber}(p)$
PMF: $\operatorname{Pr}(X=1)=p, \operatorname{Pr}(X=0)=1-p$
Expectation:
Variance:
https://pollev.com/ annakarlin185
Poll:
Mean Variance
a. $p$
b. $p \quad 1-p$
c. $p \quad p(1-p)$
d. $p \quad p(1-p)$

## Bernoulli Random Variables

A random variable $X$ that takes value 1 ("Success") with probability $p$, and 0 ("Failure") otherwise. $X$ is called a Bernoulli random variable.
Notation: $X \sim \operatorname{Ber}(p)$
PMF: $\operatorname{Pr}(X=1)=p, \operatorname{Pr}(X=0)=1-p$
Expectation: $\mathrm{E}[X]=p \quad$ Note: $\mathrm{E}\left[X^{2}\right]=p$
Variance: $\operatorname{Var}(X)=E\left[X^{2}\right]-E[X]^{2}=p-p^{2}=p(1-p)$

## Examples:

- Coin flip
- Randomly guessing on a MC test question
- A server in a cluster fails


## Agenda

- Discrete Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables -
- Geometric Random Variables
- Applications


## Binomial Random Variables

A discrete random variable $X$ that is the number of successes in $n$ independent random variables $Y_{i} \sim \operatorname{Ber}(p)$. $X$ is a Binomial random variable where $X=\sum_{i=1}^{n} Y_{i}$

## Examples:

- \# of heads in n coin flips
- \# of 1 s in a randomly generated n bit string
- \# of servers that fail in a cluster of n computers
- \# of bit errors in file written to disk
- \# of elements in a bucket of a large hash table

```
Poll:
https://pollev.com/ annakarlin185
Pr}(X=k)
a. p
b. np
c. }(\begin{array}{l}{n}\\{k}\end{array})\mp@subsup{p}{}{k}(1-p\mp@subsup{)}{}{n-k
d. (\begin{array}{c}{n}\\{n-k}\end{array})\mp@subsup{p}{}{k}(1-p\mp@subsup{)}{}{n-k}
```


## Binomial Random Variables

A discrete random variable $X$ that is the number of successes in $n$ independent random variables $Y_{i} \sim \operatorname{Ber}(p)$. $X$ is a Binomial random variable where $X=\sum_{i=1}^{n} Y_{i}$
Notation: $X \sim \operatorname{Bin}(n, p)$

PMF: $\operatorname{Pr}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}$
Expectation:

## Variance:

| Poll: <br> https://pollev.com/ annakarlin185 |  |
| :---: | :---: |
|  |  |
| Mean | Variance |
| a. $p$ | $p$ |
| b. $n p$ | $\mathrm{n} p(1-p)$ |
| c. $n p$ | $n p^{2}$ |
| d. $n p$ | $n^{2} p$ |

## Binomial Random Variables

A discrete random variable $X$ that is the number of successes in $n$ independent random variables $Y_{i} \sim \operatorname{Ber}(p)$. $X$ is a Binomial random variable where $X=\sum_{i=1}^{n} Y_{i}$
Notation: $X \sim \operatorname{Bin}(n, p)$
PMF: $\operatorname{Pr}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}$
Expectation: $\mathrm{E}[X]=n p$
Variance: $\operatorname{Var}(X)=n p(1-p)$

## Mean, Variance of the Binomial

If $Y_{1}, Y_{2}, \ldots, Y_{n} \sim \operatorname{Ber}(p)$ and independent (i.i.d), then
$X=\sum_{i=1}^{n} Y_{i}, \quad X \sim \operatorname{Bin}(n, p)$
Claim $E[X]=n p$

$$
E[X]=E\left[\sum_{i=1}^{n} Y_{i}\right]=\sum_{i=1}^{n} E\left[Y_{i}\right]=n E\left[Y_{1}\right]=n p
$$

Claim $\operatorname{Var}(X)=n p(1-p)$

$$
\operatorname{Var}(X)=\operatorname{Var}\left(\sum_{i=1}^{n} Y_{i}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(Y_{i}\right)=n \operatorname{Var}\left(Y_{1}\right)=n p(1-p)
$$

## Binomial PMFs



PMF for $X \sim \operatorname{Bin}(\mathbf{1 0 , 0 . 5})$

PMF for $X \sim \operatorname{Bin}(\mathbf{1 0 , 0 . 2 5})$

## Binomial PMFs



PMF for $X \sim \operatorname{Bin}(\mathbf{3 0}, 0.5)$

PMF for $X \sim \operatorname{Bin}(30,0.1)$

## Example

Sending a binary message of length 1024 bits over a network with probability 0.999 of correctly sending each bit in the message without corruption (independent of other bits). Let $X$ be the number of corrupted bits. What is $\mathrm{E}[X]$ ?

```
Poll:
https://pollev.com/ annakarlin18:5
a. 1022.99
b. }1.02
c. 1.02298
d. 1
e. Not enough
    information to
    compute

\section*{Brain Break}


\section*{Agenda}
- Discrete Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Geometric and other Random Variables

\section*{Geometric Random Variables}

A discrete random variable \(X\) that models the number of independent trials \(Y_{i} \sim \operatorname{Ber}(p)\) before seeing the first success. \(X\) is called a Geometric random variable with parameter \(p\).
Notation: \(X \sim \operatorname{Geo}(p)\)

\section*{PMF:}

\section*{Expectation:}

Variance:

\section*{Examples:}
- \# of coin flips until first head
- \# of random guesses on MC questions until you get one right
- \# of random guesses at a password until you hit it

\section*{Geometric Random Variables}

A discrete random variable \(X\) that models the number of independent trials \(Y_{i} \sim \operatorname{Ber}(p)\) before seeing the first success. \(X\) is called a Geometric random variable with parameter \(p\).
Notation: \(X \sim \operatorname{Geo}(p)\)
PMF: \(\operatorname{Pr}(X=k)=(1-p)^{k-1} p\)
Expectation: \(\mathrm{E}[X]=\frac{1}{p}\)
Variance: \(\operatorname{Var}(X)=\frac{1-p}{p^{2}}\)

\section*{Examples:}
- \# of coin flips until first head
- \# of random guesses on MC questions until you get one right
- \# of random guesses at a password until you hit it

\section*{Example: Music Lessons}

Your music teacher requires you to play a 1000 note song without mistake. You have been practicing, so you have a probability of 0.999 of getting each note correct (independent of the others). If you mess up a single note in the song, you must start over and play from the beginning. Let \(X\) be the number of times you have to play the song from the start. What is \(\mathrm{E}[X]\) ?

\section*{Negative Binomial Random Variables}

A discrete random variable \(X\) that models the number of independent trials \(Y_{i} \sim \operatorname{Ber}(p)\) before seeing the \(r^{t h}\) success. Equivalently, \(X=\) \(\sum_{i=1}^{r} Z_{i}\) where \(Z_{i} \sim \operatorname{Geo}(p) . X\) is called a Negative Binomial random variable with parameters \(r, p\).

\section*{Notation: \(X \sim \operatorname{NegBin}(r, p)\)}

PMF:
Expectation:
Variance:

\section*{Negative Binomial Random Variables}

A discrete random variable \(X\) that models the number of independent trials \(Y_{i} \sim \operatorname{Ber}(p)\) before seeing the \(r^{\text {th }}\) success. Equivalently, \(X=\) \(\sum_{i=1}^{r} Z_{i}\) where \(Z_{i} \sim \operatorname{Geo}(p) . X\) is called a Negative Binomial random variable with parameters \(r, p\).
Notation: \(X \sim \operatorname{NegBin}(r, p)\)
PMF: \(\operatorname{Pr}(X=k)=\binom{k-1}{r-1} p^{r}(1-p)^{k-r}\)
Expectation: \(\mathrm{E}[X]=\frac{r}{p}\)
Variance: \(\operatorname{Var}(X)=\frac{r(1-p)}{p^{2}}\)

\section*{Hypergeometric Random Variables}

A discrete random variable \(X\) that measures the number of white balls you draw when you draw \(n\) balls uniformly at random from a total of \(N\) of which \(K\) are white and the rest are black. \(X\) is called a Hypergeometric RV with parameters \(N, K, n\).
Notation: \(X \sim \operatorname{HypGeo}(N, K, n)\)

\section*{PMF:}

\section*{Expectation:}

\section*{Hypergeometric Random Variables}

A discrete random variable \(X\) that measures the number of white balls you draw when you draw \(n\) balls uniformly at random from a total of \(N\) of which \(K\) are white and the rest are black. \(X\) is called a Hypergeometric RV with parameters \(N, K, n\).

Notation: \(X \sim \operatorname{HypGeo}(N, K, n)\)
PMF: \(\operatorname{Pr}(X=k)=\frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}\)
Expectation: \(\mathrm{E}[X]=n \frac{K}{N}\)
Variance: \(\operatorname{Var}(X)=n \frac{K(N-K)(N-n)}{N^{2}(N-1)}\)

\section*{}
\[
\begin{gathered}
X \sim \operatorname{Unif}(a, b) \\
P(X=k)=\frac{1}{b-a+1} \\
E[X]=\frac{a+b}{2} \\
\operatorname{Var}(X)=\frac{(b-a)(b-a+2)}{12}
\end{gathered}
\]
\(X \sim \operatorname{Ber}(p)\)
\(P(X=1)=p, P(X=0)=1-p\)
\(E[X]=p\)
\(\operatorname{Var}(X)=p(1-p)\)
\[
\begin{aligned}
& P(X=k)=(1-p)^{k-1} p \\
& E[X]=\frac{1}{p} \\
& \operatorname{Var}(X)=\frac{1-p}{p^{2}}
\end{aligned}
\]
\[
\begin{aligned}
& \quad X \sim \operatorname{Bin}(n, p) \\
& P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \\
& E[X]=n p \\
& \operatorname{Var}(X)=n p(1-p)
\end{aligned}
\]
\[
\begin{gathered}
X \sim \operatorname{HypGeo}(N, K, n) \\
P(X=k)=\frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}} \\
E[X]=n \frac{K}{N} \\
\operatorname{Var}(X)=n \frac{K(N-K)(N-n)}{N^{2}(N-1)}
\end{gathered}
\]

\section*{Preview: Poisson}

Model: \# events that occur in an hour
- Expect to see 3 events per hour (but will be random)
- The expected number of events in \(t\) hours, is \(3 t\)
- Occurrence of events on disjoint time intervals is independent```

