CSE 312
 Foundations of Computing II

Lecture 12: Zoo of Discrete RVs

wPAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE \& ENGINEERING

Anna R. Karlin

Slide Credit: Based on Stefano Tessaro's slides for 312 19au incorporating ideas from Alex Tsun, Rachel Lin, Hunter Schafer \& myself ©

Motivation: "Named" Random Variables

Random Variables that show up all over the place.

- Easily solve a problem by recognizing it's a special case of one of these random variables.

Each RV introduced today will show:

- A general situation it models
- Its name and parameters
- Its PMF, Expectation, and Variance
- Example scenarios you can use it

$$
\begin{gathered}
X \sim \operatorname{Unif}(a, b) \\
P(X=k)=\frac{1}{b-a+1} \\
E[X]=\frac{a+b}{2} \\
\operatorname{Var}(X)=\frac{(b-a)(b-a+2)}{12}
\end{gathered}
$$

$X \sim \operatorname{Ber}(p)$
$P(X=1)=p, P(X=0)=1-p$
$E[X]=p$
$\operatorname{Var}(X)=p(1-p)$

$X \sim \operatorname{Bin}(n, p)$

$$
\begin{aligned}
& P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \\
& E[X]=n p \\
& \operatorname{Var}(X)=n p(1-p)
\end{aligned}
$$

$P(X=k)=(1-p)^{k-1} p$
$E[X]=\frac{1}{p}$
$\operatorname{Var}(X)=\frac{1-p}{p^{2}}$

$$
X \sim \operatorname{HypGeo}(N, K, n)
$$

$$
\begin{aligned}
& P(X=k)=\frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}} \\
& E[X]=n \frac{K}{N} \\
& \operatorname{Var}(X)=n \frac{K(N-K)(N-n)}{N^{2}(N-1)}
\end{aligned}
$$

Agenda

- Discrete Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Geometric Random Variables
- Applications

Discrete Uniform Random Variables

A discrete random variable X equally likely to take any (int.) value between integers a and b (inclusive), is uniform.

Notation: $X \sim \underset{p}{\sim}$ Unif (a, b)
PMF: $\operatorname{Pr}(X=k)=\frac{1}{b-a+1} \in\{a, a+1, b\}$
Expectation: $\sum_{k=a}^{b} k \frac{1}{b-a+1}=\frac{a+b}{2}$
Variance:
$\operatorname{Van}(X)=E\left(X^{2}\right)-[E(X)]^{2}$

Example: value shown on one roll of a fair die

$$
x \sim \operatorname{Un}_{\text {n }}(1,6)
$$

Discrete Uniform Random Variables

A discrete random variable X equally likely to take any (int.) value between integers a and b (inclusive), is uniform.

Notation: $X \sim \operatorname{Unif}(a, b)$
PMF: $\operatorname{Pr}(X=i)=\frac{1}{b-a+1}$
Expectation: $\mathrm{E}[X]=\frac{a+b}{2}$
Variance: $\operatorname{Var}(X)=\frac{(b-a)(b-a+2)}{12}$

Example: value shown on one roll of a fair die is $\operatorname{Unif}(1,6)$:

- $\operatorname{Pr}(X=i)=1 / 6$
- $E[X]=7 / 2$
- $\operatorname{Var}(X)=35 / 12$

Agenda

- Discrete Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Geometric Random Variables
- Applications

$$
\operatorname{Var}(x)=E\left(x^{2}\right)-(E(x))^{2}
$$

Bernoulli Random Variables
Indicator

A random variable X that takes value 1 ("Success") with probability p, and 0 ("Failure") otherwise. X is called a Bernoulli random variable.
Notation: $X \sim \operatorname{Ber}(p)$
PDF: $\operatorname{Pr}(X=1)=p, \operatorname{Pr}(X=0)=1-p$
https://pollev.com/ annakarlin185
Expectation:
Variance:

$$
p-p^{2}=p(1-p)
$$

$$
E\left(x^{2}\right)=1^{2} p+0^{2}(1-p)=p
$$

Poll:

Mean Variance
a. $p \quad p$
b. $p \quad 1-p$
c. $p \quad p(1-p)$
d. $p \quad p(1-p)$

Bernoulli Random Variables

A random variable X that takes value 1 ("Success") with probability p, and 0 ("Failure") otherwise. X is called a Bernoulli random variable.
Notation: $X \sim \operatorname{Ber}(p)$
PMF: $\operatorname{Pr}(X=1)=p, \operatorname{Pr}(X=0)=1-p$
Expectation: $\mathrm{E}[X]=p \quad$ Note: $\mathrm{E}\left[X^{2}\right]=p$
Variance: $\operatorname{Var}(X)=E\left[X^{2}\right]-E[X]^{2}=p-p^{2}=p(1-p)$

Examples:

- Coin flip
- Randomly guessing on a MC test question
- A server in a cluster fails

Agenda

- Discrete Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Geometric Random Variables
- Applications

Binomial Random Variables

A discrete random variable X that is the number of successes in n independent random variables $Y_{i} \sim \operatorname{Ber}(p)$. X is a Binomial random variable where $X=\sum_{i=1}^{n} Y_{i}$

- \# of heads in n coin flips
- \# of 1 s in a randomly generated n bit string
- \# of servers that fail in a cluster of n computers
- \# of bit errors in file written to disk
- \# of elements in a bucket of a large hash table
https://pollev.com/ annakarlin185
$\operatorname{Pr}(X=k)=$
a. $p^{k}(1-p)^{n-k}$
b. $n p$
c. $\quad\binom{n}{k} p^{k}(1-p)^{n-k}$
d. $\binom{n}{n-k} p^{k}(1-p)^{n-k}$

A discrete random variable X that is the number of successes in n independent random variables $Y_{i} \sim \operatorname{Ber}(p)$. X is a Binomial random variable where $X=\sum_{i=1}^{n} Y_{i}$
Notation: $X \sim \operatorname{Bin}(n, p)$
PDF: $\operatorname{Pr}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}$
Expectation:
Variance:

| $\left\|\begin{array}{lll} & \text { Mean } & \text { Variance } \\ \text { a. } & p & p \\ \hline \text { b. } & n p & \mathrm{n} p(1-p) \\ \hline \text { c. } & n p & n p^{2} \\ \text { d. } & n p & n^{2} p \\ \hline\end{array}\right\|$ |
| :--- | :--- |

$$
\begin{gathered}
\operatorname{Van}\left(X_{1}+X_{2}+\ldots+X_{n}\right)=\operatorname{Var}\left(X_{1}\right)+\left(k X_{2}\right)+\ldots+\operatorname{Va}\left(X_{n}\right) \\
\text { if } X_{i} \text {) mutually indef. }
\end{gathered}
$$

Binomial Random Variables

A discrete random variable X that is the number of successes in n independent random variables $Y_{i} \sim \operatorname{Ber}(p)$. X is a Binomial random variable where $X=\sum_{i=1}^{n} Y_{i}$
Notation: $X \sim \operatorname{Bin}(n, p)$
PMF: $\operatorname{Pr}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}$
Expectation: $\mathrm{E}[X]=n p$
Variance: $\operatorname{Var}(X)=n p(1-p)$

Mean, Variance of the Binomial

If $Y_{1}, Y_{2}, \ldots, Y_{n} \sim \operatorname{Ber}(p)$ and independent (i.i.d), then
$X=\sum_{i=1}^{n} Y_{i}, \quad X \sim \operatorname{Bin}(n, p)$
Claim $E[X]=n p$

$$
E[X]=E\left[\sum_{i=1}^{n} Y_{i}\right]=\sum_{i=1}^{n} E\left[Y_{i}\right]=n E\left[Y_{1}\right]=n p
$$

Claim $\operatorname{Var}(X)=n p(1-p)$

$$
\begin{gathered}
\operatorname{Var}(X)=\operatorname{Var}\left(\sum_{i=1}^{n} Y_{i}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(Y_{i}\right)=n \operatorname{Var}\left(Y_{1}\right)=n p(1-p) \\
\text { by independen Ce }
\end{gathered}
$$

mean = expectation.

Binomial PMFs

$p=0.25$

Binomial PMFs

PMF for $X \sim \operatorname{Bin}(\mathbf{3 0}, 0.5)$

PMF for $X \sim \operatorname{Bin}(30,0.1)$

Example

$X \sim B \min \left(\begin{array}{cc}1024 & 0.001 \\ n &)_{p}\end{array}\right)$

Sending a binary message of length 1024 bits over a network with probability 0.999 of correctly sending each bit in the message without corruption (independent of other bits). Let X be the number of corrupted bits. What is $\mathrm{E}[X]$?

Poll:
https://pollev.com/ annakarlin18:
a. 1022.99
b. 1.024 c. 1.02298 d. 1 e. Not enough information to compute

Brain Break

Agenda

- Discrete Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Geometric and other Random Variables

Geometric Random Variables

$\Omega_{x}=\{1,2,3$,

A discrete random variable X that models the number of independent trials $Y_{i} \sim \underline{\operatorname{Ber}(p)}$ before seeing the first success. X is called a Geometric random variable with parameter p.

Notation $X \sim \operatorname{Geo}(p)$
PMF: $\operatorname{Pr}(X=k)=(1-p)^{k-1} p$
Expectation: $\quad E(X)=\frac{1}{P}, ~$

Examples:

- \# of coin flips until first head
- \# of random guesses on MC questions until you get one right
- \# of random guesses at a password until you hit it

Geometric Random Variables

A discrete random variable X that models the number of independent trials $Y_{i} \sim \operatorname{Ber}(p)$ before seeing the first success. X is called a Geometric random variable with parameter p.

Notation: $X \sim \operatorname{Geo}(p)$
PMF: $\operatorname{Pr}(X=k)=(1-p)^{k-1} p$
Expectation: $\mathrm{E}[X]=\frac{1}{p}$
Variance: $\operatorname{Var}(X)=\frac{1-p}{p^{2}}$

Examples:

- \# of coin flips until first head
- \# of random guesses on MC questions until you get one right
- \# of random guesses at a password until you hit it

Example: Music Lessons

Your music teacher requires you to play a 1000 note song without mistake. You have been practicing, so you have a probability of 0.999 of getting each note correct (independent of the others). If you mess up a single note in the song, you must start over and play from the beginning. Let X be the number of times you have to play the song from the start. What is $\mathrm{E}[X]$?
0.001

$$
x \sim \operatorname{Geo}(\uparrow)
$$ Prob nate mistitle on singlencte.

$\operatorname{Pr}($ snceasflily play all the way time $)=(0.999)^{1000}$

Negative Binomial Random Variables

A discrete random variable X that models the number of independent trials $Y_{i} \sim \operatorname{Ber}(p)$ before seeing the $r^{t h}$ success. Equivalently, $X=$ $\sum_{i=1}^{r} Z_{i}$ where $Z_{i} \sim \operatorname{Geo}(p) . X$ is called a Negative Binomial random variable with parameters r, p.
Notation: $X \sim \operatorname{NegBin}(r, p)$
PDF:
Expectation:
Variance:
$r=3$

Ktrials to see r successes.

$$
r=4
$$

Negative Binomial Random Variables

A discrete random variable X that models the number of independent trials $Y_{i} \sim \operatorname{Ber}(p)$ before seeing the $r^{\text {th }}$ success. Equivalently, $X=$ $\sum_{i=1}^{r} Z_{i}$ where $Z_{i} \sim \operatorname{Geo}(p) . X$ is called a Negative Binomial random variable with parameters r, p.
Notation: $X \sim \operatorname{NegBin}(r, p)$
PMF: $\operatorname{Pr}(X=k)=\binom{k-1}{r-1} p^{r}(1-p)^{k-r}$
Expectation: $\mathrm{E}[X]=\frac{r}{p}$
Variance: $\operatorname{Var}(X)=\frac{r(1-p)}{p^{2}}$

Hypergeometric Random Variables

A discrete random variable X that measures the number of white balls you draw when you draw n balls uniformly at random from a total of N of which K are white and the rest are black. X is called a Hypergeometric RV with parameters N, K, n.
Notation: $X \sim \underset{\sim}{\sim}$ HypGeo(N,K,n)
PDF:

Expectation:

white ball 6
pullout when ${ }_{25}$
you pull ont selfie n at random

Hypergeometric Random Variables

A discrete random variable X that measures the number of white balls you draw when you draw n balls uniformly at random from a total of N of which K are white and the rest are black. X is called a Hypergeometric RV with parameters N, K, n.

Notation: $X \sim \operatorname{HypGeo}(N, K, n)$
PMF: $\operatorname{Pr}(X=k)=\frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}$
Expectation: $\mathrm{E}[X]=n \frac{K}{N}$
Variance: $\operatorname{Var}(X)=n \frac{K(N-K)(N-n)}{N^{2}(N-1)}$

$$
\begin{gathered}
X \sim \operatorname{Unif}(a, b) \\
P(X=k)=\frac{1}{b-a+1} \\
E[X]=\frac{a+b}{2} \\
\operatorname{Var}(X)=\frac{(b-a)(b-a+2)}{12}
\end{gathered}
$$

$X \sim \operatorname{Ber}(p)$
$P(X=1)=p, P(X=0)=1-p$
$E[X]=p$
$\operatorname{Var}(X)=p(1-p)$

$X \sim \operatorname{Geo}(p)$

$P(X=k)=(1-p)^{k-1} p$
$E[X]=\frac{1}{p}$
$\operatorname{Var}(X)=\frac{1-p}{p^{2}}$

$$
\begin{aligned}
& X \sim \operatorname{Bin}(n, p) \\
& P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \\
& E[X]=n p \\
& \operatorname{Var}(X)=n p(1-p)
\end{aligned}
$$

$$
X \sim \operatorname{HypGeo}(N, K, n)
$$

$$
P(X=k)=\frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}
$$

$$
E[X]=n \frac{K}{N}
$$

$$
\operatorname{Var}(X)=n \frac{K(N-K)(N-n)}{N^{2}(N-1)}
$$

