CSE 312

Foundations of Computing II

Lecture 11: Variance and independence of R.V.s

Anna R. Karlin

Slide Credit: Based on Stefano Tessaro's slides for 312 19au incorporating ideas from Alex Tsun, Rachel Lin, Hunter Schafer & myself ©

Recap Linearity of Expectation

Theorem. For any two random variables X and Y(X, Y) do not need to be independent)

$$\mathbb{E}(X+Y)=\mathbb{E}(X)+\mathbb{E}(Y).$$

Theorem. For any random variables $X_1, ..., X_n$, and real numbers $a_1, ..., a_n \in \mathbb{R}$,

$$\mathbb{E}(a_1X_1 + \dots + a_nX_n) = a_1\mathbb{E}(X_1) + \dots + a_n\mathbb{E}(X_n).$$

For any event A, can define the indicator random variable X for A

$$X = \begin{cases} 1 & \text{if event A occurs} \\ 0 & \text{if event A does not occur} \end{cases} \qquad \mathbb{P}(X = 1) = \mathbb{P}(A)$$

$$\mathbb{P}(X = 1) = \mathbb{P}(A)$$
$$\mathbb{P}(X = 0) = 1 - \mathbb{P}(A)$$

Recap Linearity is special!

In general
$$\mathbb{E}(g(X)) \neq g(\mathbb{E}(X))$$

E.g., $X = \begin{cases} 1 & with \ prob \ 1/2 \\ -1 & with \ prob \ 1/2 \end{cases}$
 $\circ \quad \mathbb{E}(X^2) \neq \mathbb{E}(X)^2$

How DO we compute $\mathbb{E}(g(X))$?

Recap Expectation of g(X)

Definition. Given a discrete RV $X: \Omega \to \mathbb{R}$, the expectation or expected value of the random variable g(X) is

$$E[g(X)] = \sum_{\omega \in \Omega} g(X(\omega)) \cdot Pr(\omega)$$

or equivalently

$$E[g(X)] = \sum_{x \in X(\Omega)} g(x) \cdot Pr(X = x)$$

Example: Expectation of g(X)

Suppose we rolled a fair, 6-sided die in a game. You will win the cube of the number rolled dollars, times 10. Let X be the result of the dice roll. What is your expected winnings?

$$E[10X^3] =$$

Agenda

- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables

Game 1: In every round, you win \$2 with probability 1/3, lose \$1 with probability 2/3.

 W_1 = payoff in a round of Game 1

$$\mathbb{P}(W_1=2)=\frac{1}{3}$$
, $\mathbb{P}(W_1=-1)=\frac{2}{3}$

Game 1: In every round, you win \$2 with probability 1/3, lose \$1 with probability 2/3.

 W_1 = payoff in a round of Game 1

$$\mathbb{P}(W_1 = 2) = \frac{1}{3}$$
, $\mathbb{P}(W_1 = -1) = \frac{2}{3}$

Game 2: In every round, you win \$10 with probability 1/3, lose \$5 with probability 2/3.

 W_2 = payoff in a round of Game 2

$$\mathbb{P}(W_2 = 10) = \frac{1}{3}, \mathbb{P}(W_2 = -5) = \frac{2}{3}$$

Which game would you <u>rather</u> play?

Game 1: In every round, you win \$2 with probability 1/3, lose \$1 with probability 2/3.

 W_1 = payoff in a round of Game 1

$$\mathbb{P}(W_1=2)=\frac{1}{3}$$
, $\mathbb{P}(W_1=-1)=\frac{2}{3}$

 $\mathbb{E}(W_1)=0$

Game 2: In every round, you win \$10 with probability 1/3, lose \$5 with probability 2/3.

 W_2 = payoff in a round of Game 2

$$\mathbb{P}(W_2 = 10) = \frac{1}{3}, \mathbb{P}(W_2 = -5) = \frac{2}{3}$$

 $\mathbb{E}(W_2)=0$

Which game would you rather play?

Somehow, Game 2 has higher volatility / exposure!

$$\mathbb{P}(W_1 = 2) = \frac{1}{3}$$
, $\mathbb{P}(W_1 = -1) = \frac{2}{3}$

$$\mathbb{P}(W_2 = 10) = \frac{1}{3}, \mathbb{P}(W_2 = -5) = \frac{2}{3}$$

Same expectation, but clearly very different distribution.

We want to capture the difference – New concept: Variance

Variance (Intuition, First Try)

$$\mathbb{P}(W_1 = 2) = \frac{1}{3}, \mathbb{P}(W_1 = -1) = \frac{2}{3}$$

$$\frac{2/3}{-1} = 0$$

New quantity (random variable): How far from the expectation?

$$\Delta(W_1) = W_1 - E[W_1]$$

Variance (Intuition, First Try)

$$\mathbb{P}(W_1 = 2) = \frac{1}{3}, \mathbb{P}(W_1 = -1) = \frac{2}{3}$$

$$\frac{2/3}{-1} = 0$$

New quantity (random variable): How far from the expectation?

$$\Delta(W_1) = W_1 - E[W_1]$$

$$E[\Delta(W_1)] = E[W_1 - E[W_1]]$$

= $E[W_1] - E[E[W_1]]$
= $E[W_1] - E[W_1]$
= 0

$$\mathbb{P}(W_1 = 2) = \frac{1}{3}, \mathbb{P}(W_1 = -1) = \frac{2}{3}$$

$$\frac{2/3}{-1} = 0$$

A better quantity (random variable): How far from the expectation?

$$\Delta(W_1) = (W_1 - E[W_1])^2$$

$$E[\Delta(W_1)] = E[(W_1 - E[W_1])^2]$$

$$\mathbb{P}(W_1 = 2) = \frac{1}{3}, \mathbb{P}(W_1 = -1) = \frac{2}{3}$$

$$\frac{2/3}{-1}, 0, 0, 0, 0$$

$$\frac{2}{3}$$

A better quantity (random variable): How far from the expectation?

$$\Delta(W_1) = (W_1 - E[W_1])^2$$

$$\mathbb{P}(\Delta(W_1) = 1) = \frac{2}{3}$$

$$\mathbb{P}(\Delta(W_1) = 4) = \frac{1}{3}$$

$$E[\Delta(W_1)] = E[(W_1 - E[W_1])^2]$$

$$= \frac{2}{3} \cdot 1 + \frac{1}{3} \cdot 4$$

$$= 2$$

$$\mathbb{P}(W_2 = 10) = \frac{1}{3}, \mathbb{P}(W_2 = -5) = \frac{2}{3}$$

$$2/3 -5$$
0
+10 1/3

A better quantity (random variable): How far from the expectation?

$$\Delta'(W_2) = (W_2 - E[W_2])^2$$

$$\mathbb{P}(\Delta'(W_2) = 25) = \frac{2}{3}$$

$$\mathbb{P}(\Delta'(W_2) = 100) = \frac{1}{3}$$

Poll:

https://pollev.com/ annakarlin185

- A. 0
- B. 20/3
- C. 50
- D. 2500

$$\mathbb{P}(W_2 = 10) = \frac{1}{3}, \mathbb{P}(W_2 = -5) = \frac{2}{3}$$

$$\frac{2}{3} = \frac{2}{3}$$

A better quantity (random variable): How far from the expectation?

$$\Delta'(W_2) = (W_2 - E[W_2])^2$$

$$\mathbb{P}(\Delta'(W_2) = 25) = \frac{2}{3}$$

$$\mathbb{P}(\Delta'(W_2) = 100) = \frac{1}{3}$$

$$E[\Delta'(W_2)] = E[(W_2 - E[W_2])^2]$$

$$= \frac{2}{3} \cdot 25 + \frac{1}{3} \cdot 100$$

$$= 50$$

We say that W_2 has "higher variance" than W_1 .

Variance

Definition. The **variance** of a (discrete) RV *X* is

$$Var(X) = \mathbb{E}\left[\left(X - \mathbb{E}(X)\right)^{2}\right] = \sum_{x} \mathbb{p}_{X}(x) \cdot \left(x - \mathbb{E}(X)\right)^{2}$$

Recall $\mathbb{E}(X)$ is a **constant**, not a random variable itself.

<u>Intuition:</u> Variance is a quantity that measures, in expectation, how "far" the random variable is from its expectation.

Variance

Definition. The **variance** of a (discrete) RV *X* is

$$Var(X) = \mathbb{E}\left[\left(X - \mathbb{E}(X)\right)^{2}\right] = \sum_{x} \mathbb{p}_{X}(x) \cdot \left(x - \mathbb{E}(X)\right)^{2}$$

Standard deviation: $\sigma(X) = \sqrt{\text{Var}(X)}$

Recall $\mathbb{E}(X)$ is a **constant**, not a random variable itself.

<u>Intuition:</u> Variance (or standard deviation) is a quantity that measures, in expectation, how "far" the random variable is from its expectation.

Variance – Example 1

X fair die

- $\mathbb{P}(X = 1) = \dots = \mathbb{P}(X = 6) = 1/6$
- $\mathbb{E}(X) = 3.5$

$$Var(X) = ?$$

Variance – Example 1

X fair die

- $\mathbb{P}(X = 1) = \dots = \mathbb{P}(X = 6) = 1/6$
- $\mathbb{E}(X) = 3.5$

$$Var(X) = \sum_{x} \mathbb{P}(X = x) \cdot (x - \mathbb{E}(X))^{2}$$

$$= \frac{1}{6}[(1-3.5)^2 + (2-3.5)^2 + (3-3.5)^2 + (4-3.5)^2 + (5-3.5)^2 + (6-3.5)^2]$$

$$= \frac{2}{6} \left[2.5^2 + 1.5^2 + 0.5^2 \right] = \frac{2}{6} \left[\frac{25}{4} + \frac{9}{4} + \frac{1}{4} \right] = \frac{35}{12} \approx 2.91677 \dots$$

Variance in Pictures

Captures how much "spread' there is in a pmf

All pmfs in picture have same expectation

Agenda

- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables

Variance – Properties

Definition. The **variance** of a (discrete) RV *X* is

$$Var(X) = \mathbb{E}\left[\left(X - \mathbb{E}(X)\right)^{2}\right] = \sum_{x} \mathbb{p}_{X}(x) \cdot \left(x - \mathbb{E}(X)\right)^{2}$$

Theorem. For any $a, b \in \mathbb{R}$, $Var(a \cdot X + b) = a^2 \cdot Var(X)$

(Proof: Exercise!)

Theorem. $Var(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2$

Theorem: $Var(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2$

Proof:

Variance

Theorem. $Var(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2$

Proof: Var(X) =
$$\mathbb{E}\left[\left(X - \mathbb{E}(X)\right)^2\right]$$
 Recall $\mathbb{E}(X)$ is a constant
= $\mathbb{E}[X^2 - 2\mathbb{E}(X) \cdot X + \mathbb{E}(X)^2]$
= $\mathbb{E}(X^2) - 2\mathbb{E}(X)\mathbb{E}(X) + \mathbb{E}(X)^2$ (linearity of expectation!)
= $\mathbb{E}(X^2) - \mathbb{E}(X)^2$ are different!

Variance – Example 1

X fair die

- $\mathbb{P}(X = 1) = \dots = \mathbb{P}(X = 6) = 1/6$
- $\mathbb{E}(X) = \frac{21}{6}$
- $\mathbb{E}(X^2) = \frac{91}{6}$

$$Var(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2 = \frac{91}{6} - \left(\frac{21}{6}\right)^2 = \frac{105}{36} \approx 2.91677$$

In General, $Var(X + Y) \neq Var(X) + Var(Y)$

Example to show this:

- Let X be a r.v. with pmf $\mathbb{P}(X = 1) = \mathbb{P}(X = -1) = 1/2$
 - What is E[X] and Var(X)?

In General,
$$Var(X + Y) \neq Var(X) + Var(Y)$$

Example to show this:

- Let X be a r.v. with pmf $\mathbb{P}(X = 1) = \mathbb{P}(X = -1) = 1/2$ - $\mathbb{E}[X] = 0$ and $\mathbb{V}(X) = 1$
- Let Y = -X
 - What is E[Y] and Var(Y)?

In General,
$$Var(X + Y) \neq Var(X) + Var(Y)$$

Example to show this:

- Let X be a r.v. with pmf $\mathbb{P}(X = 1) = \mathbb{P}(X = -1) = 1/2$ - $\mathbb{E}[X] = 0$ and $\mathbb{V}(X) = 1$
- Let Y = -X-E[Y] = 0 and Var(Y) = 1

What is Var(X + Y)?

In General,
$$Var(X + Y) \neq Var(X) + Var(Y)$$

Example to show this:

- Let X be a r.v. with pmf $\mathbb{P}(X = 1) = \mathbb{P}(X = -1) = 1/2$ - $\mathbb{E}[X] = 0$ and $\mathbb{V}(X) = 1$
- Let Y = -X-E[Y] = 0 and Var(Y) = 1

What is Var(X + X)?

Agenda

- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables

Random Variables and Independence

Definition. Two random variables X, Y are (mutually) independent if for all x, y,

$$\mathbb{P}(X = x, Y = y) = \mathbb{P}(X = x) \cdot \mathbb{P}(Y = y)$$

Intuition: Knowing X doesn't help you guess Y and vice versa

Definition. The random variables $X_1, ..., X_n$ are (mutually) independent if for all $x_1, ..., x_n$,

$$\mathbb{P}(X_1 = x_1, ..., X_n = x_n) = \mathbb{P}(X_1 = x_1) \cdots \mathbb{P}(X_n = x_n)$$

Example

Let X be the number of heads in n independent coin flips of the same coin with probability p of coming up Heads. Let $Y = X \mod 2$ be the parity (even/odd) of X.

Are *X* and *Y* independent?

Poll:

https://pollev.com/annakarlin185

A. Yes

B. No

Example

Make 2n independent coin flips of the same coin. Let X be the number of heads in the first n flips and Y be the number of heads in the last n flips.

Are *X* and *Y* independent?

Poll:

https://pollev.com/annakarlin185

A. Yes

B. No

Agenda

- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables

Important Facts about Independent Random Variables

Theorem. If X, Y independent, $\mathbb{E}(X \cdot Y) = \mathbb{E}(X) \cdot \mathbb{E}(Y)$

Theorem. If X, Y independent, Var(X + Y) = Var(X) + Var(Y)

Corollary. If $X_1, X_2, ..., X_n$ mutually independent,

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{Var}(X_{i})$$

Independent Random Variables are nice!

Theorem. If X, Y independent, $\mathbb{E}(X \cdot Y) = \mathbb{E}(X) \cdot \mathbb{E}(Y)$

Proof

Let $x_i, y_i, i = 1, 2, \ldots$ be the possible values of X, Y. $E[X \cdot Y] = \sum_i \sum_j x_i \cdot y_j \cdot P(X = x_i \wedge Y = y_j) \text{ independence}$ $= \sum_i \sum_j x_i \cdot y_j \cdot P(X = x_i) \cdot P(Y = y_j)$ $= \sum_i x_i \cdot P(X = x_i) \cdot \left(\sum_j y_j \cdot P(Y = y_j)\right)$ $= E[X] \cdot E[Y]$

Proof not covered

Note: NOT true in general; see earlier example $E[X^2] \neq E[X]^2$

(Not Covered) Proof of Var(X + Y) = Var(X) + Var(Y)

Theorem. If X, Y independent, Var(X + Y) = Var(X) + Var(Y)

Proof

$$Var[X + Y]$$

$$= E[(X + Y)^{2}] - (E[X + Y])^{2}$$

$$= E[X^{2} + 2XY + Y^{2}] - (E[X] + E[Y])^{2}$$

$$= E[X^{2}] + 2E[XY] + E[Y^{2}] - ((E[X])^{2} + 2E[X]E[Y] + (E[Y])^{2})$$

$$= E[X^{2}] - (E[X])^{2} + E[Y^{2}] - (E[Y])^{2} + 2(E[XY] - E[X]E[Y])$$

$$= Var[X] + Var[Y] + 2(E[X]E[Y] - E[X]E[Y])$$

$$= Var[X] + Var[Y]$$

Proof not covered

Example – Coin Tosses

We flip n independent coins, each one heads with probability p

-
$$X_i = \begin{cases} 1, & i\text{--th outcome is heads} \\ 0, & i\text{--th outcome is tails.} \end{cases}$$

- Z = number of heads

What is E[Z]? What is Var(Z)?

Note: X_1, \dots, X_n are <u>mutually</u> independent!

Fact.
$$Z = \sum_{i=1}^{n} X_i$$

$$\mathbb{P}(X_i = 1) = p$$

$$\mathbb{P}(X_i = 0) = 1 - p$$

Example – Coin Tosses

We flip n independent coins, each one heads with probability p

-
$$X_i = \begin{cases} 1, & i$$
—th outcome is heads $0, & i$ —th outcome is tails.

- Z = number of heads

What is E[Z]? What is Var(Z)?

Fact.
$$Z = \sum_{i=1}^{n} X_i$$

$$\mathbb{P}(X_i = 1) = p$$

$$\mathbb{P}(X_i = 0) = 1 - p$$

$$\mathbb{P}(Z=k) = \binom{n}{k} p^k (1-p)^{n-k}$$

Note: $X_1, ..., X_n$ are mutually independent!

$$Var(Z) = \sum_{i=1}^{n} Var(X_i) = n \cdot p(1-p)$$
Note $Var(X_i) = p(1-p)$

Example

Make 2n independent coin flips of the same coin. Let X be the number of heads in the first n flips and Y be the number of heads in the last n flips and let Z be the number of heads in all 2n flips.

Are *X* and *Z* independent?

Poll:

https://pollev.com/ annakarlin185

A. Yes

B. No