CSE 312
 Foundations of Computing II

Lecture 11: Variance and independence of R.V.s

w
PAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE \& ENGINEERING

Anna R. Karlin

Slide Credit: Based on Stefano Tessaro’s slides for 312 19au incorporating ideas from Alex Tsun, Rachel Lin, Hunter Schafer \& myself ©

Recap Linearity of Expectation

Theorem. For any two random variables X and Y (X, Y do not need to be independent)

$$
\mathbb{E}(X+Y)=\mathbb{E}(X)+\mathbb{E}(Y)
$$

Theorem. For any random variables X_{1}, \ldots, X_{n}, and real numbers $a_{1}, \ldots, a_{n} \in \mathbb{R}$,

$$
\mathbb{E}\left(a_{1} X_{1}+\cdots+a_{n} X_{n}\right)=a_{1} \mathbb{E}\left(X_{1}\right)+\cdots+a_{n} \mathbb{E}\left(X_{n}\right)
$$

For any event A, can define the indicator random variable X for A

$$
X=\left\{\begin{array}{lr}
1 & \text { if event A occurs } \\
0 & \text { if event A does not occur }
\end{array}\right.
$$

$$
\begin{gathered}
\mathbb{P}(X=1)=\mathbb{P}(A) \\
\mathbb{P}(X=0)=1-\mathbb{P}(A)
\end{gathered}
$$

Recap Linearity is special!

$$
\begin{aligned}
& \text { In general } \mathbb{E}(g(X)) \neq g(\mathbb{E}(X)) \\
& \text { E.g., } X=\left\{\begin{array}{c}
1 \text { with prob } 1 / 2 \\
-1 \text { with prob } 1 / 2
\end{array}\right. \\
& . \mathbb{E}\left(X^{2}\right) \neq \mathbb{E}(X)^{2}
\end{aligned}
$$

How DO we compute $\mathbb{E}(g(X))$?

Recap Expectation of $g(X)$

Definition. Given a discrete $\mathrm{RV} X: \Omega \rightarrow \mathbb{R}$, the expectation or expected value of the random variable $g(X)$ is

$$
\mathrm{E}[g(X)]=\sum_{\omega \in \Omega} g(X(\omega)) \cdot \operatorname{Pr}(\omega)
$$

or equivalently

$$
\mathrm{E}[g(X)]=\sum_{x \in X(\Omega)} g(x) \cdot \operatorname{Pr}(X=x)
$$

Example: Expectation of $g(X)$

Suppose we rolled a fair, 6 -sided die in a game. You will win the cube of the number rolled dollars, times 10 . Let X be the result of the dice roll. What is your expected winnings?
$E\left[10 X^{3}\right]=$

Agenda

- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables

Two Games

Game 1: In every round, you win $\$ 2$ with probability $1 / 3$, lose $\$ 1$ with probability $2 / 3$.
$W_{1}=$ payoff in a round of Game 1
$\mathbb{P}\left(W_{1}=2\right)=\frac{1}{3}, \mathbb{P}\left(W_{1}=-1\right)=\frac{2}{3}$

Two Games

Game 1: In every round, you win $\$ 2$ with probability $1 / 3$, lose $\$ 1$ with probability $2 / 3$.
$W_{1}=$ payoff in a round of Game 1

$$
\mathbb{P}\left(W_{1}=2\right)=\frac{1}{3}, \mathbb{P}\left(W_{1}=-1\right)=\frac{2}{3}
$$

Game 2: In every round, you win $\$ 10$ with probability $1 / 3$, lose $\$ 5$ with probability 2/3.
$W_{2}=$ payoff in a round of Game 2

$$
\mathbb{P}\left(W_{2}=10\right)=\frac{1}{3}, \mathbb{P}\left(W_{2}=-5\right)=\frac{2}{3}
$$

Which game would you rather play?

Two Games

Game 1: In every round, you win $\$ 2$ with probability $1 / 3$, lose $\$ 1$ with probability $2 / 3$.
$W_{1}=$ payoff in a round of Game 1
$\mathbb{P}\left(W_{1}=2\right)=\frac{1}{3}, \mathbb{P}\left(W_{1}=-1\right)=\frac{2}{3}$

$$
\mathbb{E}\left(W_{1}\right)=0
$$

Game 2: In every round, you win $\$ 10$ with probability $1 / 3$, lose $\$ 5$ with probability $2 / 3$.
$W_{2}=$ payoff in a round of Game 2
$\mathbb{P}\left(W_{2}=10\right)=\frac{1}{3}, \mathbb{P}\left(W_{2}=-5\right)=\frac{2}{3}$
Which game would you rather play?

$$
\mathbb{E}\left(W_{2}\right)=0
$$

Somehow, Game 2 has higher volatility / exposure!

Two Games

 $2 / 3 \quad 1 / 3$
$\mathbb{P}\left(W_{2}=10\right)=\frac{1}{3}, \mathbb{P}\left(W_{2}=-5\right)=\frac{2}{3}$
$2 / 3$

Same expectation, but clearly very different distribution.
We want to capture the difference - New concept: Variance

Variance (Intuition, First Try)

$\mathbb{P}\left(W_{1}=2\right)=\frac{1}{3}, \mathbb{P}\left(W_{1}=-1\right)=\frac{2}{3}$
New quantity (random variable): How far from the expectation?
$\Delta\left(W_{1}\right)=W_{1}-E\left[W_{1}\right]$

Variance (Intuition, First Try)

$\mathbb{P}\left(W_{1}=2\right)=\frac{1}{3}, \mathbb{P}\left(W_{1}=-1\right)=\frac{2}{3}$

$$
\mathbb{E}\left(W_{1}\right)=0
$$

New quantity (random variable): How far from the expectation?
$\Delta\left(W_{1}\right)=W_{1}-E\left[W_{1}\right]$

$$
\begin{aligned}
E\left[\Delta\left(W_{1}\right)\right] & =E\left[W_{1}-E\left[W_{1}\right]\right] \\
& =E\left[W_{1}\right]-E\left[E\left[W_{1}\right]\right] \\
& =E\left[W_{1}\right]-E\left[W_{1}\right] \\
& =0
\end{aligned}
$$

Variance (Intuition, Better Try)

$\mathbb{P}\left(W_{1}=2\right)=\frac{1}{3}, \mathbb{P}\left(W_{1}=-1\right)=\frac{2}{3}$

$$
\mathbb{E}\left(W_{1}\right)=0
$$

A better quantity (random variable): How far from the expectation?
$\Delta\left(W_{1}\right)=\left(W_{1}-E\left[W_{1}\right]\right)^{2}$

$$
E\left[\Delta\left(W_{1}\right)\right]=E\left[\left(W_{1}-E\left[W_{1}\right]\right)^{2}\right]
$$

Variance (Intuition, Better Try)

$$
\mathbb{P}\left(W_{1}=2\right)=\frac{1}{3}, \mathbb{P}\left(W_{1}=-1\right)=\frac{2}{3}
$$

$$
\mathbb{E}\left(W_{1}\right)=0
$$

A better quantity (random variable): How far from the expectation?

$$
\begin{aligned}
& \Delta\left(W_{1}\right)=\left(W_{1}-E\left[W_{1}\right]\right)^{2} \\
& \mathbb{P}\left(\Delta\left(W_{1}\right)=1\right)=\frac{2}{3} \\
& \mathbb{P}\left(\Delta\left(W_{1}\right)=4\right)=\frac{1}{3}
\end{aligned}
$$

$$
\begin{aligned}
E\left[\Delta\left(W_{1}\right)\right] & =E\left[\left(W_{1}-E\left[W_{1}\right]\right)^{2}\right] \\
& =\frac{2}{3} \cdot 1+\frac{1}{3} \cdot 4 \\
& =2
\end{aligned}
$$

Variance (Intuition, Better Try)

$$
\mathbb{P}\left(W_{2}=10\right)=\frac{1}{3}, \mathbb{P}\left(W_{2}=-5\right)=\frac{2}{3}
$$

A better quantity (random variable): How far from the expectation?

$$
\begin{array}{ll}
\Delta^{\prime}\left(W_{2}\right)=\left(W_{2}-E\left[W_{2}\right]\right)^{2} & \text { Poll: } \\
\mathbb{P}\left(\Delta^{\prime}\left(W_{2}\right)=25\right)=\frac{2}{3} & \text { https://pollev.com/annakarlin185 } \\
& \text { A. } 0 \\
\mathbb{P}\left(\Delta^{\prime}\left(W_{2}\right)=100\right)=\frac{1}{3} & \text { B. } 20 / 3 \\
& \text { C. } 50 \\
& \text { D. } 2500
\end{array}
$$

Variance (Intuition, Better Try)

$$
\mathbb{P}\left(W_{2}=10\right)=\frac{1}{3}, \mathbb{P}\left(W_{2}=-5\right)=\frac{2}{3}
$$

A better quantity (random variable): How far from the expectation?

$$
\begin{array}{rlr}
\Delta^{\prime}\left(W_{2}\right)=\left(W_{2}-E\left[W_{2}\right]\right)^{2} & E\left[\Delta^{\prime}\left(W_{2}\right)\right] & =E\left[\left(W_{2}-E\left[W_{2}\right]\right)^{2}\right] \\
\mathbb{P}\left(\Delta^{\prime}\left(W_{2}\right)=\frac{2}{3}\right. & & =\frac{2}{3} \cdot 25+\frac{1}{3} \cdot 100 \\
\mathbb{P}\left(\Delta^{\prime}\left(W_{2}\right)=100\right)=\frac{1}{3} & & =50
\end{array}
$$

We say that W_{2} has "higher variance" than W_{1}.

Variance

Definition. The variance of a (discrete) RV X is

$$
\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}(X))^{2}\right]=\sum_{x} \mathbb{P}_{X}(x) \cdot(x-\mathbb{E}(X))^{2}
$$

$$
\begin{aligned}
& \text { Recall } \mathbb{E}(X) \text { is a } \\
& \text { constant, not a random } \\
& \text { variable itself. }
\end{aligned}
$$

Intuition: Variance is a quantity that measures, in expectation, how "far" the random variable is from its expectation.

Variance

Definition. The variance of a (discrete) RV X is

$$
\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}(X))^{2}\right]=\sum_{x} \mathbb{P}_{X}(x) \cdot(x-\mathbb{E}(X))^{2}
$$

Standard deviation: $\sigma(X)=\sqrt{\operatorname{Var}(X)}$

$$
\begin{aligned}
& \text { Recall } \mathbb{E}(X) \text { is a } \\
& \text { constant, not a random } \\
& \text { variable itself. }
\end{aligned}
$$

Intuition: Variance (or standard deviation) is a quantity that measures, in expectation, how "far" the random variable is from its expectation.

Variance - Example 1

X fair die

- $\mathbb{P}(X=1)=\cdots=\mathbb{P}(X=6)=1 / 6$
- $\mathbb{E}(X)=3.5$
$\operatorname{Var}(\mathrm{X})=$?

Variance - Example 1

X fair die

- $\mathbb{P}(X=1)=\cdots=\mathbb{P}(X=6)=1 / 6$
- $\mathbb{E}(X)=3.5$
$\operatorname{Var}(\mathrm{X})=\sum_{x} \mathbb{P}(X=x) \cdot(x-\mathbb{E}(X))^{2}$
$=\frac{1}{6}\left[(1-3.5)^{2}+(2-3.5)^{2}+(3-3.5)^{2}+(4-3.5)^{2}+(5-3.5)^{2}+(6-3.5)^{2}\right]$
$=\frac{2}{6}\left[2.5^{2}+1.5^{2}+0.5^{2}\right]=\frac{2}{6}\left[\frac{25}{4}+\frac{9}{4}+\frac{1}{4}\right]=\frac{35}{12} \approx 2.91677 \ldots$

Variance in Pictures

Captures how much "spread' there is in a pmf

All pmfs in picture have same expectation
$\sigma^{2}=5.83$
$\sigma^{2}=10$

$$
\sigma^{2}=15
$$

$\sigma^{2}=19.7$

Agenda

- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables

Variance - Properties

Definition. The variance of a (discrete) $\mathrm{RV} X$ is

$$
\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}(X))^{2}\right]=\sum_{x} \mathbb{P}_{X}(x) \cdot(x-\mathbb{E}(X))^{2}
$$

Theorem. For any $a, b \in \mathbb{R}, \operatorname{Var}(a \cdot X+b)=a^{2} \cdot \operatorname{Var}(X)$
(Proof: Exercise!)

Theorem. $\operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2}$

Theorem: $\operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2}$

Proof:

Variance

Theorem. $\operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2}$

Variance - Example 1

X fair die

- $\mathbb{P}(X=1)=\cdots=\mathbb{P}(X=6)=1 / 6$
- $\mathbb{E}(X)=\frac{21}{6}$
- $\mathbb{E}\left(X^{2}\right)=\frac{91}{6}$
$\operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2}=\frac{91}{6}-\left(\frac{21}{6}\right)^{2}=\frac{105}{36} \approx 2.91677$

In General, $\operatorname{Var}(X+Y) \neq \operatorname{Var}(X)+\operatorname{Var}(Y)$

Example to show this:

- Let X be a r.v. with pmf $\mathbb{P}(X=1)=\mathbb{P}(X=-1)=1 / 2$
- What is $\mathrm{E}[X]$ and $\operatorname{Var}(X)$?

In General, $\operatorname{Var}(X+Y) \neq \operatorname{Var}(X)+\operatorname{Var}(Y)$

Example to show this:

- Let X be a r.v. with pmf $\mathbb{P}(X=1)=\mathbb{P}(X=-1)=1 / 2$
$-\mathrm{E}[X]=0$ and $\operatorname{Var}(X)=1$
- Let $Y=-X$
- What is $\mathrm{E}[Y]$ and $\operatorname{Var}(Y)$?

In General, $\operatorname{Var}(X+Y) \neq \operatorname{Var}(X)+\operatorname{Var}(Y)$

Example to show this:

- Let X be a r.v. with pmf $\mathbb{P}(X=1)=\mathbb{P}(X=-1)=1 / 2$
$-\mathrm{E}[X]=0$ and $\operatorname{Var}(X)=1$
- Let $Y=-X$
$-\mathrm{E}[Y]=0$ and $\operatorname{Var}(Y)=1$

What is $\operatorname{Var}(X+Y)$?

In General, $\operatorname{Var}(X+Y) \neq \operatorname{Var}(X)+\operatorname{Var}(Y)$

Example to show this:

- Let X be a r.v. with pmf $\mathbb{P}(X=1)=\mathbb{P}(X=-1)=1 / 2$
$-\mathrm{E}[X]=0$ and $\operatorname{Var}(X)=1$
- Let $Y=-X$
$-\mathrm{E}[Y]=0$ and $\operatorname{Var}(Y)=1$

What is $\operatorname{Var}(X+X)$?

Agenda

- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables

Random Variables and Independence

Definition. Two random variables X, Y are (mutually) independent if for all x, y,

$$
\mathbb{P}(X=x, Y=y)=\mathbb{P}(X=x) \cdot \mathbb{P}(Y=y)
$$

Intuition: Knowing X doesn't help you guess Y and vice versa

Definition. The random variables X_{1}, \ldots, X_{n} are (mutually) independent if for all x_{1}, \ldots, x_{n},

$$
\mathbb{P}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)=\mathbb{P}\left(X_{1}=x_{1}\right) \cdots \mathbb{P}\left(X_{n}=x_{n}\right)
$$

Example

Let X be the number of heads in n independent coin flips of the same coin with probability p of coming up Heads. Let $Y=$ $\mathrm{X} \bmod 2$ be the parity (even/odd) of X.
Are X and Y independent?

Poll:

https://pollev.com/ annakarlin185
A. Yes
B. No

Example

Make $2 n$ independent coin flips of the same coin. Let X be the number of heads in the first n flips and Y be the number of heads in the last n flips.
Are X and Y independent?

Poll:

https://pollev.com/ annakarlin185
A. Yes
B. No

Agenda

- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables

Important Facts about Independent Random Variables

Theorem. If X, Y independent, $\mathbb{E}(X \cdot Y)=\mathbb{E}(X) \cdot \mathbb{E}(Y)$

Theorem. If X, Y independent, $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$

Corollary. If $X_{1}, X_{2}, \ldots, X_{n}$ mutually independent,

$$
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i}^{n} \operatorname{Var}\left(X_{i}\right)
$$

Independent Random Variables are nice!

Theorem. If X, Y independent, $\mathbb{E}(X \cdot Y)=\mathbb{E}(X) \cdot \mathbb{E}(Y)$

Proof
Let $x_{i}, y_{i}, i=1,2, \ldots$ be the possible values of X, Y.
$E[X \cdot Y]=\sum_{i} \sum_{j} x_{i} \cdot y_{j} \cdot P\left(X=x_{i} \wedge Y=y_{j}\right) \quad \downarrow^{\text {independence }}$
$=\sum_{i} \sum_{j} x_{i} \cdot y_{j} \cdot P\left(X=x_{i}\right) \cdot P\left(Y=y_{j}\right)$
$=\sum_{i} x_{i} \cdot P\left(X=x_{i}\right) \cdot\left(\sum_{j} y_{j} \cdot P\left(Y=y_{j}\right)\right)$
$=E[X] \cdot E[Y]$
Note: NOT true in general; see earlier example $\mathrm{E}\left[\mathrm{X}^{2}\right] \neq \mathrm{E}[\mathrm{X}]^{2}$

Proof not covered

(Not Covered) Proof of $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$

Theorem. If X, Y independent, $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$

Proof \quad| $\operatorname{Var}[X+Y]$ |
| ---: |
| |
| $=E\left[(X+Y)^{2}\right]-(E[X+Y])^{2}$ |
| |
| $=E\left[X^{2}+2 X Y+Y^{2}\right]-(E[X]+E[Y])^{2}$ |
| |
| $=E\left[X^{2}\right]+2 E[X Y]+E\left[Y^{2}\right]-\left((E[X])^{2}+2 E[X] E[Y]+(E[Y])^{2}\right)$ |
| |
| $=E\left[X^{2}\right]-(E[X])^{2}+E\left[Y^{2}\right]-(E[Y])^{2}+2(E[X Y]-E[X] E[Y])$ |
| |
| $=\operatorname{Var}[X]+\operatorname{Var}[Y]+2(E[X] E[Y]-E[X] E[Y])$ |$\quad \operatorname{Var}[X]+\operatorname{Var}[Y]$.

Proof not covered

Example - Coin Tosses

We flip n independent coins, each one heads with probability p

- $X_{i}= \begin{cases}1, & i-\text { th outcome is heads } \\ 0, & i-\text { th outcome is tails. }\end{cases}$
- $Z=$ number of heads

$$
\begin{aligned}
& \mathbb{P}\left(X_{i}=1\right)=p \\
& \mathbb{P}\left(X_{i}=0\right)=1-p
\end{aligned}
$$

What is $\mathrm{E}[Z]$? What is $\operatorname{Var}(Z)$?

Note: X_{1}, \ldots, X_{n} are mutually independent!

Example - Coin Tosses

We flip n independent coins, each one heads with probability p

- $X_{i}= \begin{cases}1, & i-\text { th outcome is heads } \\ 0, & i-\text { th outcome is tails. }\end{cases}$

$$
\text { Fact. } Z=\sum_{i=1}^{n} X_{i}
$$

- $Z=$ number of heads

$$
\begin{aligned}
& \mathbb{P}\left(X_{i}=1\right)=p \\
& \mathbb{P}\left(X_{i}=0\right)=1-p
\end{aligned}
$$

What is $\mathrm{E}[Z]$? What is $\operatorname{Var}(Z)$?

$$
\mathbb{P}(Z=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Note: X_{1}, \ldots, X_{n} are mutually independent!
$\square \operatorname{Var}(Z)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)=n \cdot p(1-p) \quad \operatorname{Note} \operatorname{Var}\left(X_{i}\right)=p(1-p)$

Example

Make $2 n$ independent coin flips of the same coin. Let X be the number of heads in the first n flips and Y be the number of heads in the last n flips and let Z be the number of heads in all $2 n$ flips.
Are X and Z independent?

Poll:

https://pollev.com/ annakarlin185
A. Yes
B. No

