CSE 312
 Foundations of Computing II

Lecture 10: Bloom Filters; LOTUS

W
PAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE \& ENGINEERING

Anna R. Karlin

Slide Credit: Based on slides by Shreya Jayraman, Luxi Wang, Alex Tsun \& myself ©

Last Class:

- Linearity of Expectation

Today:

- An application: Bloom Filters!
- LOTUS

Basic Problem

Problem: Store a subset S of a large set U.
Example. $U=$ set of 128 bit strings
$S=$ subset of strings of interest

$$
\begin{array}{r}
|U| \approx 2^{128} \\
|S| \approx 1000
\end{array}
$$

Two goals:

1. Very fast (ideally constant time) answers to queries "Is $x \in S$?"
2. Minimal storage requirements.

$$
x \in U
$$

Naïve Solution - Constant Time

Idea: Represent S as an array A with 2^{128} entries. $\quad \mathrm{A}[x]= \begin{cases}1 & \text { if } x \in S \\ 0 & \text { if } x \notin S\end{cases}$

$$
S=\{0,2, \ldots, \mathrm{~K}\}
$$

$\mathbf{0}$	1	2	\ldots	K	\ldots		
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	\ldots	$\mathbf{0}$	$\mathbf{0}$

Naïve Solution - Constant Time

Idea: Represent S as an array A with 2^{128} entries. $A[x]= \begin{cases}1 & \text { if } x \in S \\ 0 & \text { if } x \notin S\end{cases}$
$S=\{0,2, \ldots, \mathrm{~K}\}$

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	\ldots	K	\ldots		
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	\ldots	$\mathbf{0}$	$\mathbf{0}$

Membership test: To check. $x \in S$ just check whether $\mathrm{A}[x]=1$.
\rightarrow constant time!

Storage: Require storing 2^{128} bits, even for small S.

Naïve Solution - Small Storage

Idea: Represent S as a list with $|S|$ entries.

$$
S=\{0,2, \ldots, K\}
$$

Naïve Solution - Small Storage

Idea: Represent S as a list with $|S|$ entries.
$S=\{0,2, \ldots, K\}$

Storage: Grows with $|S|$ only

Membership test: Check $x \in S$ requires time linear in $|S|$
(Can be made logarithmic by using a tree)

Hash Table

$$
|S|=n
$$

Idea: Map elements in S into an array A of size n using a hash function
Membership test: To check $x \in S$ just check whether $A[\mathbf{h}(x)]=x$

$$
h: U \rightarrow\{0,1, \ldots, n-1\}
$$

Storage: n elements (size of array)

$$
\text { hash function } \mathbf{h}:[\mathrm{U}] \rightarrow[n]
$$

Hash Table

Idea: Map elements in S into an array A using a hash function

Membership test: To check $x \in S$ just check whether $A[\mathbf{h}(x)]=x$

Storage: n elements

Challenge 2: Ensure $n=O(|S|)$

Hashing: collisions

- Collisions occur when two elements of set map to the same location in the hash table.
- Common solution: chaining - at each location (bucket) in the table, keep linked list of all elements that hash there.
- Want: hash function that distributes the elements of S well across hash table locations. Ideally uniform distribution!

Hashing: summary

Hash Tables

- They store the data itself
- With a good hash function, the data is well distributed in the table and lookup times are small.
- However, they need at least as much space as all the data being stored
- E.g. storing strings, or IP addresses or long DNA sequences.

Bloom Filters: motivation

- Large universe of possible data items.
- Data items are large (say 128 bits or more)
- Hash table is stored on disk or across network, so any lookup is expensive. Many (if not nearly all) of the lookups return "Not found".

Altogether, this is bad. You're wasting a lot of time and space doing lookups for items that aren't even present.

Bloom Filters: Motivation

- Large universe of possible data items.
- Hash table is stored on disk or in network, so any lookup is expensive.
- Many (if not most) of the lookups return "Not found".

Altogether, this is bad. You're wasting a lot of time and space doing lookups for items that aren't even present.

Example:

. Network routers: want to track source IP addresses of certain packets, .e.g., blocked IP addresses.

Bloom Filters

to the rescue

Bloom Filters: motivation (3)

- Probabilistic data structure.
- Close cousins of hash tables.
- Ridiculously space efficient
- To get that, make occasional errors, specifically false positives.

Bloom Filters

- Stores information about a set of elements.
- Supports two operations:

1. add(\mathbf{x}) - adds x to bloom filter
2. contains(x) - returns true if x in bloom filter, otherwise returns false

- If returns false, definitely not in bloom filter.
- If returns true, possibly in the structure (some false positives).

Bloom Filters

- Why accept false positives?

Speed - both operations very very fast.
Space - requires a miniscule amount of space relative to storing all the actual items that have been added.

- Often just 8 bits per inserted item!

Bloom Filters: Initialization

Bloom Filters: Example

bloom filter t with $m=5$ that uses $k=3$ hash functions

function InITIALIZE(k,m) for $i=1, \ldots, k$: do $t_{i}=$ new bit vector of m 0 0's	Index $\boldsymbol{\rightarrow}$	0	1	2	3	4
$\mathbf{t}_{\mathbf{1}}$	0	0	0	0	0	
$\mathbf{t}_{\mathbf{2}}$	0	0	0	0	0	
$\mathbf{t}_{\mathbf{3}}$	0	0	0	0	0	

Bloom Filters: Add

Bloom Filters: Example

bloom filter t with $m=5$ that uses $k=3$ hash functions
function $\operatorname{ADD}(\mathrm{x})$
$\left[\begin{array}{c}\text { for } i=1, \ldots, k: \mathbf{d o} \\ t_{i}\left[h_{i}(x)\right]=1\end{array}\right.$
$i=1$
$h_{1}(x)=2$

$$
h_{1} \text { ("thisisavirus.com") } \rightarrow 2
$$

Index \boldsymbol{h}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{t}_{\mathbf{1}}$	0	0	0	0	0
$\mathbf{t}_{\mathbf{2}}$	0	0	0	0	0
$\mathbf{t}_{\mathbf{3}}$	0	0	0	0	0

Bloom Filters: Example

bloom filter t of length $m=5$ that uses $k=3$ hash functions
add("thisisavirus.com")

$\begin{gathered} \text { function } \operatorname{ADD}(\mathrm{x}) \\ \text { for } i=1, \ldots, k \text { : do } \\ \left.\left.t_{i}\right] h_{i}(x)\right]=1 \end{gathered}$	Index \rightarrow	$\begin{aligned} & h_{1}(\text { "thisisavirus.com") } \rightarrow 2 \\ & h_{2}(\text { "thisisavirus.com" }) \rightarrow 1 \end{aligned}$				
		0	1	2	3	4
$h_{2}(x)=11$	t_{1}	0	0	1	0	0
	t_{2}	0		0	0	0
	t_{3}	0	0	0	0	0

Bloom Filters: Example

bloom filter t of length $m=5$ that uses $k=3$ hash functions
add("thisisavirus.com")

> function $\operatorname{ADD}(\mathrm{x})$
> for $i=1, \ldots, k:$ do
> $t_{i}\left[h_{i}(x)\right]=1$
> $i=3$
> $h_{3}(x)=14$

Index \boldsymbol{t}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{t}_{\mathbf{1}}$	0	0	$\mathbf{1}$	0	0
$\mathbf{t}_{\mathbf{2}}$	0	$\mathbf{1}$	0	0	0
$\mathbf{t}_{\mathbf{3}}$	0	0	0	0	0

Bloom Filters: Example

bloom filter t of length $m=5$ that uses $k=3$ hash functions
add("thisisavirus.com")

```
function \(\operatorname{ADD}(\mathrm{x})\)
```

function $\operatorname{ADD}(\mathrm{x})$
for $i=1, \ldots, k$: do
for $i=1, \ldots, k$: do
$t_{i}\left[h_{i}(x)\right]=1$

```
    \(t_{i}\left[h_{i}(x)\right]=1\)
```

$$
\begin{aligned}
& h_{1}(\text { "thisisavirus.com") } \rightarrow 2 \\
& h_{2} \text { ("thisisavirus.com") } \rightarrow 1 \\
& h_{3}(\text { "thisisavirus.com") } \rightarrow 4
\end{aligned}
$$

Index $\boldsymbol{\rightarrow}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{t}_{\mathbf{1}}$	0	0	$\mathbf{1}$	0	0
$\mathbf{t}_{\mathbf{2}}$	0	$\mathbf{1}$	0	0	0
$\mathbf{t}_{\mathbf{3}}$	0	0	0	0	$\mathbf{1}$

Bloom Filters: Example

bloom filter t with m = 5 that uses $k=3$ hash functions
function contains (x)
return $t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \wedge \cdots \wedge t_{k}\left[h_{k}(x)\right]==1$
contains("thisisavirus.com")

Index $\mathbf{~}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{t}_{\mathbf{1}}$	0	0	$\mathbf{1}$	0	0
$\mathbf{t}_{\mathbf{2}}$	0	$\mathbf{1}$	0	0	0
$\mathbf{t}_{\mathbf{3}}$	0	0	0	0	$\mathbf{1}$

Bloom Filters: Example

bloom filter t of length $m=5$ that uses $k=3$ hash
functions contains("thisisavirus.com")
h_{1} ("thisisavirus.com") $\rightarrow 2$
function CONTAINS(x)
return $t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \wedge \cdots \wedge t_{k}\left[h_{k}(x)\right]==1$
True

Index $\mathbf{7}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{t}_{\mathbf{1}}$	0	0	$\mathbf{1}$	0	0
$\mathbf{t}_{\mathbf{2}}$	0	$\mathbf{1}$	0	0	0
$\mathbf{t}_{\mathbf{3}}$	0	0	0	0	$\mathbf{1}$

Bloom Filters: Example

bloom filter t of length $m=5$ that uses $k=3$ hash functions contains("thisisavirus.com")

$\begin{aligned} & \text { function ConTAINS }(x) \\ & \quad \text { return } t_{1}\left[h_{1}(x)\right]=1 \wedge t_{2}\left[h_{2}(x)\right]==1 \wedge \cdots \wedge t_{k}\left[h_{k}(x)\right]==1 \end{aligned}$			h_{1} ("thisisavirus.com") $\rightarrow 2$ h_{2} ("thisisavirus.com") $\rightarrow 1$				
True True	$\underset{\substack{\text { Index } \\ \rightarrow}}{ }$						
			1	2	3	4	
	t_{1}	0	0	1	0	0	
	t_{2}	0	1	0	0	0	
	t_{3}	\bigcirc	0	0	\bigcirc	1	

Bloom Filters: Example

bloom filter t of length $m=5$ that uses $k=3$ hash functions contains("thisisavirus.com")

Bloom Filters: Example

bloom filter t of length $m=5$ that uses $k=3$ hash functions contains("thisisavirus.com")

function CONTAINS (\mathbf{x}) return $t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \wedge \cdots \wedge t_{k}\left[h_{k}(x)\right]==1$						
True True	True					
	Index	0	1	2	3	4
Since all conditions satisfied, returns True (correctly) 0						
	${ }_{1}$	\bigcirc	\bigcirc	1	(0
	t_{2}	0	1	0	0	0
	t_{3}	0	0	0	0	1

Bloom Filters: Contains

function CONTAINS(x)
return $t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \wedge \cdots \wedge t_{k}\left[h_{k}(x)\right]==1$

Returns True if the bit vector
t_{i} for each hash function has
bit 1 at index determined by $h_{i}(x)$, otherwise returns False

Bloom Filters: False Positives

bloom filter t of length $m=5$ that uses $k=3$ hash functions
add("totallynotsuspicious.com")
$\left\{\begin{array}{c}\text { function } \operatorname{ADD}(\mathrm{x}) \\ \text { for } i=1, \ldots, k \text { : do } \\ t_{i}\left[h_{i}(x)\right]=1 \\ \hline\end{array}\right.$

Index $\boldsymbol{\rightarrow}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{t}_{\mathbf{1}}$	0	0	1	0	0
$\mathbf{t}_{\mathbf{2}}$	0	1	0	0	0
$\mathbf{t}_{\mathbf{3}}$	0	0	0	0	1

Bloom Filters: False Positives

bloom filter t of length $m=5$ that uses $k=3$ hash functions
add("totallynotsuspicious.com")
function $\operatorname{ADD}(\mathrm{x})$
for $i=1, \ldots, k$: do $t_{i}\left[h_{i}(x)\right]=1$

Index $\boldsymbol{\rightarrow}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{t}_{\mathbf{1}}$	0	0	1	0	0
$\mathbf{t}_{\mathbf{2}}$	0	1	0	0	0
$\mathbf{t}_{\mathbf{3}}$	0	0	0	0	1

Bloom Filters: False Positives

bloom filter t of length $m=5$ that uses $k=3$ hash functions
add ("totallynotsuspicious. com")
function $\operatorname{ADD}(\mathrm{x})$
for $i=1, \ldots, k$: do $t_{i}\left[h_{i}(x)\right]=1$
 $r_{2}(y)=0$
$\longrightarrow \mathrm{h}_{1}$ ("totallynotsuspicious.com") $\rightarrow 1$ h_{2} ("totallynotsuspicious.com") $\rightarrow 0$

Index \boldsymbol{h}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{t}_{\mathbf{1}}$	0	$\mathbf{1}$	1	0	0
$\mathbf{t}_{\mathbf{2}}$	0	1	0	0	0
$\mathbf{t}_{\mathbf{3}}$	0	0	0	0	1

Bloom Filters: False Positives

bloom filter t of length $m=5$ that uses $k=3$ hash
functions

function $\operatorname{ADD}(\mathrm{x})$
for $i=1, \ldots, k: \mathbf{d o}$
$t_{i}\left[h_{i}(x)\right]=1$

Index $\boldsymbol{\rightarrow}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{t}_{\mathbf{1}}$	0	$\mathbf{1}$	1	0	0
$\mathbf{t}_{\mathbf{2}}$	$\mathbf{1}$	1	0	0	0
$\mathbf{t}_{\mathbf{3}}$	0	0	0	0	1

$h_{1}: U \rightarrow\left\{0,12^{2}, 4\right\}$

Bloom Filters: False Positives

bloom filter t of length $m=5$ that uses $k=3$ hash
functions
function $\operatorname{ADD}(\mathrm{x})$
for $i=1, \ldots, k$: do
$t_{i}\left[h_{i}(x)\right]=1$

Collision, is already set to 1
add("totallynotsuspicious.com")
h_{1} ("totallynotsuspicious.com") $\rightarrow 1$
h_{2} ("totallynotsuspicious.com") $\rightarrow 0$
h_{3} ("totallynotsuspicious.com") $\rightarrow 4$

Index $\boldsymbol{\rightarrow}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{t}_{\mathbf{1}}$	0	$\mathbf{1}$	1	0	0
$\mathbf{t}_{\mathbf{2}}$	$\mathbf{1}$	1	0	0	0
$\mathbf{t}_{\mathbf{3}}$	0	0	0	0	1

Bloom Filters: False Positives

bloom filter t of length $m=5$ that uses $k=3$ hash
functions

function $\operatorname{ADD}(\mathrm{x})$
for $i=1, \ldots, k: \mathbf{d o}$
$t_{i}\left[h_{i}(x)\right]=1$

 for \(i=1, \ldots, k\) : do
 \(t_{i}\left[h_{i}(x)\right]=1\)
 add("totallynotsuspicious.com")
 \(h_{1}\) ("totallynotsuspicious.com") \(\rightarrow 1\)
 \(h_{2}\) ("totallynotsuspicious.com") \(\rightarrow 0\)
 \(h_{3}\) ("totallynotsuspicious.com") \(\rightarrow 4\)
 | Index
 $\boldsymbol{\rightarrow}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{t}_{\mathbf{1}}$ | 0 | $\mathbf{1}$ | 1 | 0 | 0 |
| $\mathbf{t}_{\mathbf{2}}$ | $\mathbf{1}$ | 1 | 0 | 0 | 0 |
| $\mathbf{t}_{\mathbf{3}}$ | 0 | 0 | 0 | 0 | $\mathbf{1}$ |

Bloom Filters: Example

bloom filter t of length $m=5$ that uses $k=3$ hash
functions
function CONTAINS (x)
return $t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \wedge \cdots \wedge t_{k}\left[h_{k}(x)\right]==1$

Index $\mathbf{7}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{t}_{\mathbf{1}}$	0	1	1	0	0
$\mathbf{t}_{\mathbf{2}}$	1	1	0	0	0
$\mathbf{t}_{\mathbf{3}}$	0	0	0	0	1

Bloom Filters: Example

bloom filter t of length $m=5$ that uses $k=3$ hash
functions
function contains(x)
return $t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \wedge \cdots \wedge t_{k}\left[h_{k}(x)\right]==1$
contains("verynormalsite.com")
h_{1} ("verynormalsite.com") $\rightarrow 2$

True

Index $\boldsymbol{\rightarrow}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{t}_{\mathbf{1}}$	0	1	$\mathbf{1}$	0	0
$\mathbf{t}_{\mathbf{2}}$	1	1	0	0	0
$\mathbf{t}_{\mathbf{3}}$	0	0	0	0	1

Bloom Filters: Example

bloom filter t of length $m=5$ that uses $k=3$ hash functions
contains("verynormalsite.com")
h_{1} ("verynormalsite.com") $\rightarrow 2$
h_{2} ("verynormalsite.com") $\rightarrow 0$

True True

Index $\boldsymbol{7}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{t}_{\mathbf{1}}$	0	1	$\mathbf{1}$	0	0
$\mathbf{t}_{\mathbf{2}}$	$\mathbf{1}$	1	0	0	0
$\mathbf{t}_{\mathbf{3}}$	0	0	0	0	1

Bloom Filters: Example

bloom filter t of length $m=5$ that uses $k=3$ hash functions contains("verynormalsite.com")

Bloom Filters: Example

bloom filter t of length $m=5$ that uses $k=3$ hash functions contains("verynormalsite.com")

Bloom Filters: Summary

- An empty bloom filter is an empty kx m bit array with all values initialized to zeros
- k = number of hash functions
- $m=$ size of each array in the bloom filter
- $\operatorname{add}(x)$ runs in $O(k)$ time
- contains(x) runs in $\mathrm{O}(\mathrm{k})$ time
- requires $\mathrm{O}(\mathrm{km})$ space (in bits!)
- Probability of false positives from collisions can be reduced by increasing the size of the bloom filter

Bloom Filters: Application

- Google Chrome has a database of malicious URLs, but it takes a long time to query.
- Want an in-browser structure, so needs to be efficient and be space-efficient
- Want it so that can check if a URL is in structure:
- If return False, then definitely not in the structure (don't need to do expensive database lookup, website is safe)
- If return True, the URL may or may not be in the structure. Have to perform expensive lookup in this rare case.

Comparison with Hash Tables - Space

$$
n
$$

- Google storing 5 million URLs, each URL 40 bytes.
- Bloom filter with

$$
m=10,000,000 \quad k=8
$$

\square
Hash Table

$$
\begin{aligned}
& 5,000,000 \times 40 \\
&= 200,000,000 \\
& B
\end{aligned}
$$

False pos rate
5% of space 0.0006

Comparison with Hash Tables - Time

- Say avg user visits 102,000 URLs in a year, of which 2,000 are malicious.
- 0.5 seconds to do lookup in the database, 1 ms for lookup in Bloom filter.
- Suppose the false positive rate is 3%
Hash Table
$102,000 \times 0.5 \mathrm{sec}$
$=61,000 \mathrm{sec}$
about 5%

Bloom Filter

$$
102,000 \times \frac{1}{1000}=102 \text { secs }
$$

$$
\begin{array}{r}
2000 \times 0.5+100,000 \times 0.03 \\
\times 0.5
\end{array}
$$

Bloom Filters: Many Applications

- Any scenario where space and efficiency are important.
- Used a lot in networking
- In distributed systems when want to check consistency of data across different locations, might send a Bloom filter rather than the full set of data being stored.
- Google BigTable uses Bloom filters to reduce disk lookups
- Internet routers often use Bloom filters to track blocked IP addresses.
- And on and on...

$$
h(100)=51
$$

Bloom Filters typical of....
of randomized algorithms and randomized data-structures.

- Simple
- Fast
- Efficient
- Elegant
- Useful!

Back to R.V.s....

LOTUS

Law Of The Unconscious Statistician

Expectation of Random Variable

Definition. Given a discrete $\operatorname{RV} X: \Omega \rightarrow \mathbb{R}$, the expectation or expected value of X is

$$
\mathrm{E}[X]=\sum_{\omega \in \Omega} X(\omega) \cdot \operatorname{Pr}(\omega)
$$

or equivalently

Intuition: "Weighted average" of the possible outcomes (weighted by probability)

Linearity of Expectation

Theorem. For any two random variables X and Y

$$
\mathbb{E}(X+Y)=\mathbb{E}(X)+\mathbb{E}(Y)
$$

Theorem. For any random variables X_{1}, \ldots, X_{n}, and real numbers $a_{1}, \ldots, a_{n}, c \in \mathbb{R}$,

$$
\mathbb{E}\left(a_{1} X_{1}+\cdots+a_{n} X_{n}+c\right)=a_{1} \mathbb{E}\left(X_{1}\right)+\cdots+a_{n} \mathbb{E}\left(X_{n}\right)+c .
$$

Computing complicated expectations

Often boils down to the following three steps

- Decompose: Finding the right way to decompose the random variable into sum of simple random variables

$$
X=X_{1}+\cdots+X_{n}
$$

- LOE: Observe linearity of expectation.
- Conquer: Compute the expectation of each X_{i}

Often, X_{i} are indicator (o/1) random variables.

Indicator random variable

For any event A, can define the indicator random variable X

$$
X=\left\{\begin{array}{lr}
1 & \text { if event A occurs } \\
0 & \text { if event A does not occur }
\end{array}\right.
$$

$\mathbb{P}(X=1)=\mathbb{P}(\mathrm{A})$
$\mathbb{P}(X=0)=1-\mathbb{P}(A)$

Example: Returning Homeworks

- Class with n students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own H
- Let $Y=\left(X^{2}+4\right) \bmod 8$.

$$
g(x)=\left(x^{2}+4\right) \bmod 8
$$

- what is $\mathbb{E}(Y)$?

$$
\begin{gathered}
\operatorname{Pr}(y=4)=\frac{1}{3} \\
\operatorname{Pr}(y=5)=\frac{2}{3} \\
E(y)=5 \cdot \operatorname{Pr}(y=5) \\
+4 \operatorname{Pr}(y=-4)= \\
=\sum_{y \in \Omega,}^{y} \operatorname{Pr}(y=y) \\
y=\{t, 5\}
\end{gathered}
$$

$$
\begin{aligned}
&\left.E(y)=\sum_{x \in \Omega} g(x) \operatorname{Pr}(x=x)=\{0,1,\}^{2}\right\} \\
&\left(3^{2}+4\right) m d g \operatorname{Pr}(x=3)
\end{aligned}+\left(r^{2}+4\right) m \operatorname{le} \operatorname{Pr}(x=1)
$$

Linearity is special!
In general $\mathbb{E}(g(X)) \neq g(\mathbb{E}(X))$

$$
\begin{aligned}
& \text { E.g. } \sqrt{X}=\frac{1 \text { with prob } 1 / 2}{-1} \text { with prob } 1 / 2 \\
& \qquad \mathbb{E}\left(X^{2}\right) \neq \mathbb{E}(X)^{2}
\end{aligned}
$$

x^{2}

$$
1
$$

$$
\begin{gathered}
E(x)=0 \\
1 \cdot \frac{1}{2}+(-1) \cdot \frac{1}{2} \\
E\left(x^{2}\right)=1
\end{gathered}
$$

How DO we compute $\mathbb{E}(g(X))$?

$$
y=g(x)
$$

Expectation of $g(X)$ (LOTUS)

Definition. Given a discrete RV $X: \Omega \rightarrow \mathbb{R}$, the expectation or expected value of $\mathrm{Y}=g(X)$ is

$$
\mathrm{E}[Y]=\sum_{\mid x \in \Omega_{X}} g(x) \cdot \operatorname{Pr}(X=x)
$$

or equivalently

