CSE 312: Foundations of Computing Il

Section 8: Maximum Likelihood, Markov Chains and more Solutions

1. Review of Main Concepts

(a)
(b)

(¢)

(f)

(8)

(h)

Realization/Sample: A realization/sample 2 of a random variable X is the value that is actually observed.

Likelihood: Let x1, ...z, be iid realizations from probability mass function px(x ;0) (if X discrete) or
density fx(x ;0) (if X continuous), where 0 is a parameter (or a vector of parameters). We define the
likelihood function to be the probability of seeing the data.

If X is discrete: "
L(x1,....xn | 0)=]]px (zi| 0)
i=1

If X is continuous:

L(x1,...,7n | 0) =[] fx (zi | 0)
=1

Maximum Likelihood Estimator (MLE): We denote the MLE of 6 as 9M|_E or simply 0, the parameter
(or vector of parameters) that maximizes the likelihood function (probability of seeing the data).

OMmLE :argmguxL(xl,...,xn | ) :argmeaxlnL(xl,...,xn | 0)

Log-Likelihood: We define the log-likelihood as the natural logarithm of the likelihood function. Since
the logarithm is a strictly increasing function, the value of 6 that maximizes the likelihood will be exactly
the same as the value that maximizes the log-likelihood.

If X is discrete: .
InL(x1,...,2 | 0) = Zlnpx (z; ] 0)
i=1

If X is continuous: .
InL(xy,...,2, | 0) = Zlnfx (xi | 0)
i=1

Bias: The bias of an estimator 0 for a true parameter 0 is defined as Bias (é, 9) = E[0] —6. An estimator
0 of 0 is unbiased iff Bias (é, 0> =0, or equivalently E[f] = 6.

Steps to find the maximum likelihood estimator, 6:

(a) Find the likelihood and log-likelihood of the data.
(b) Take the derivative of the log-likelihood and set it to 0 to find a candidate for the MLE, .

(c) Take the second derivative and show that 0 indeed is a maximizer, that (89275 < 0 at . Also ensure
that it is the global maximizer: check points of non-differentiability and boundary values.

A discrete-time stochastic process (DTSP) is a sequence of random variables Xy, X7, X», ..., where
X is the value at time t. For example, the temperature in Seattle or stock price of TESLA each day, or
which node you are at after each time step on a random walk on a graph.

A Markov Chain is a DTSP, with the additional following three properties:



l. ...has a finite (or countably infinite) state space S = {si,...,s,} which it bounces between, so
each X; € S.

II. ...satisfies the Markov property. A DTSP satisfies the Markov property if the future is (condition-
ally) independent of the past given the present. Mathematically, it means, P(Xy11 = z441|Xo =
o, X1 =w1,..., Xpo1 =21, Xy = x) = P(Xyq1 = 21| Xy = 24).

[l. ...is defined by a transition probability matrix (TPM) P whose entries are transition probabilities.
P is a square n x n matrix, where Pj; = P(X;11 = s;|X; = s;) is the probability of transitioning
from state s; to state s;. Note that these values are independent of the time ¢.

(i) (To be covered in class 11/29) The stationary distribution 7 of a Markov chain is an n-dimensional row
vector T = [m] ..., my] such that 7P =7 and )" | m; = 1. The interpretation of 7 is the following: If
at some time t, the probability of being in state ¢ is 7; for all ¢, then the same holds true at time ¢ + 1
(and at every step thereafter).

(j) (To be covered in class 11/29) The fundamental theorem of Markov chains says that lim;_, Pfj =

for all 7, j, where Pitj is the probability that, starting from state 4, the chain is in state j after ¢ steps.

T

(k) (To be covered in class 12/1) Markov’s Inequality: Let X be a non-negative random variable, and
a > 0. Then, P(X >a) < BX.

(1) (To be covered in class 12/1) Chebyshev’s Inequality (we did not cover this in class): Suppose Y is a
random variable with E[Y] = p and Var(Y) = 0. Then, for any a > 0, P(|Y — pu| > a) < Z—z

(m) Chernoff Bound (for the Binomial): (We will not cover this in class, but it's good to know.) It's
stronger than the Chebyshev bound. Suppose X ~ Binomial(n,p) and © = np. Then, for any 0 < 6 < 1,

62;1

c P(X>(140)p)<e s

52,u

s P(X<(1-8)p)<e 2

(n) (To be covered in class 12/1) Weak Law of Large Numbers (WLLN): Let X;,..., X, be iid random
variables with common mean p and variance_aQ. Let X,, = %Z?:l X; be the_sample mean for a sample
of size n. Then, for any € > 0, lim,_,o, P(|X,, — 1| > €) = 0. We say that X,, converges in probability
to u.

2. 312 Grades

Suppose Professor Karlin loses everyones grades for 312 and decides to make it up by assigning grades randomly
according to the following probability distribution, and hoping the n students wont notice: give an A with
probability 0.5, a B with probability 6, a C with probability 20, and an I’ with probability 0.5 —360. Each student
is assigned a grade independently. Let x4 be the number of people who received an A, xp the number of people
who received a B, etc, where x4 + x5 + x¢c + r = n. Find the MLE for 6.
Solution:
The data tells us, for each student in the class, what their grade was. We begin by computing the likelihood
of seeing the given data given our parameter 6. Because each student is assigned a grade independently, the
likelihood is equal to the product over students of the chance they got the particular grade they got, which
gives us:

L(x|6) = 0.5"40%B(26)*° (0.5 — 30)*F

From there, we just use the MLE process to get the log-likelihood, take the first derivative, set it equal to 0,
and solve for 6.
In L(z]0) = x4 1n(0.5) + xpIn(f) + xc In(20) + zr In(0.5 — 30)



9, rp | TC 3rp
— InL(x|0) =—+ — — =0
o M EE0) = =~ G5
Solving yields § = %.
3. A Red Poisson
Suppose that z1,...,x, are i.i.d. samples from a Poisson(#) random variable, where 6 is unknown. Find the
MLE of 6.
Solution:

Because each Poisson RV is i.i.d., the likelihood of seeing that data is just the PMF of the Poisson distribution
multiplied together for every x;. From there, take the log-likelihood, then the first derivative, set it equal to 0
and solve for for 6.

n

g0
L(zy,...;xn | 0) = He G:I:i!

n

L (21,....xn | 0) = Y [0 —In(z;!) + 2;In(0)]

i=1
0 - Z;
%IDL(xl,...,:nn| 0) = ;[—1—1—9}—0
—n+ Ln 17 _ 0
i 2T
n

4. Independent Shreds, You Say?

(Covered in class.) You are given 100 independent samples xi,xo,...,x100 from Bernoulli(f), where 0 is
unknown. (Each sample is either a 0 or a 1). These 100 samples sum to 30. You would like to estimate the
distribution’s parameter 6. Give all answers to 3 significant digits.

(a) What is the maximum likelihood estimator 6 of 7

Solution:

Note that ¥;c(,jz; = 30, as given in the problem spec. Therefore, there are 30 1s and 70 Os. (Note that
they come in some specific order.) Therefore, we can setup L as follows, because there is a § chance of
getting a 1, and a (1 —6) chance of getting a 0 and they are each i.i.d. From there, take the log-likelihood,
then the first derivative, set it equal to 0 and solve for for 6.

L(zy,...,xn | 0) = (1—6)709%
InL(z1,...,2n | 0) = 70In(1—-6)+30In6
0 70 30
gg 2L (@ sza | 0) gt a 70"
30 70
0 1—-6
30—300 = 700
i~ 30
100

(b) Is 6 an unbiased estimator of 67



Solution:

An estimator is unbiased if the expectation of the estimator is equal to the original parameter, i.e.:

E[0] = 0. Setting up the expectation of our estimator and plugging it in for the generic case, we get the
following, which we can then reduce with linearity of expectation:

. 1 100
E[f] = E [100 ; Xi]
1 100

- — Y E[X,
100 & =

1
= —-1000 = 0.
100

so it is unbiased.

5. Y Me?

Let y1,y2, ...yn be i.i.d. samples of a random variable with density function

Fr(wl0) = g5 exp(~2)

Find the MLE for 6 in terms of |y;| and n.
Solution:

Since the samples are i.i.d., the likelihood of seeing n samples of them is just their PDFs multiplied together.
From there, take the log-likelihood, then the first derivative, set it equal to 0 and solve for for 6.

7.1 Yi
L(y17"'7yn| 9) = H%exp(—U)
=1

InL(y1,...,yn | 0) = Z

glnL(yl,...yn|9) — zn: 71+@ 0
00 ) 2|79 o
0 02
§— Zimlvil
n
6. Laplace MLE
Suppose 71, ..., Ta, are iid realizations from the Laplace density (double exponential density): for z € R,

fx(z]0)= %67|179|

Find the MLE for 6. For this problem, you need not verify that the MLE is indeed a maximizer. You may find
the sign function useful:

+1, x>0
sgn (z) = -1, <0



Solution:

We begin by setting up the likelihood like we do in any case. Since these are i.i.d. realizations, we can multiply
all their PDFs together. From there, take the log-likelihood, then the first derivative, where we notice that the
derivative of —In2 — |z; — 6| is just the sign function of z; — 6. Then, set that equal to 0 and solve for for 6.

2n 1
L(%l,...,xgn’ 9) = Hieilxiiel
i=1

2n

InL(x1,..., 290 | ) = > [~In2—|z; — 0]
i=1
ﬁlnL(xl,...,xgn] 0) = isgn(mi—e)—()
o6 —
0 = anyvaluein [x;l,a:,nﬂ]

where az; is the i*" order statistic: the it" smallest observation (see 5.10 in the textbook for more details).

If you wanted to argue that this is a global maximizer, note that the log likelihood is the sum of concave
functions, so every critical point is a global maximizer.

7. Faulty Machines

You are trying to use a machine that only works on some days. If on a given day, the machine is working it will
break down the next day with probability 0 < b < 1, and works on the next day with probability 1 — b. If it is
not working on a given day, it will work on the next day with probability 0 < r < 1 and not work the next day
with probability 1 — r.

(a) In this problem we will formulate this process as a Markov chain. First, let X; be a random variable that
denotes the state of the machine at time ¢. Then, define a state space S that includes all the possible
states that the machine can be in. Lastly, for all A,B € S find P(X;4y1 = A | X¢ = B) (A and B can be
the same state).

Solution:

Formally, a Markov chain is defined by a state space S and a transition probability matrix. The two
possible states of the machine are “working” and “broken”. So, & = {W, B}. Let X; be the state of the
process at time . Then we can define the following transition probabilities:

P(Xpn =W [ Xe=W)=1-b P(Xs1=B|X,=W)=b
P(Xep1 =W | Xy =B)=r PXpn=B|X;=B)=1-r

We can also represent the TPM with the following matrix:

P=[

r 1—r

where the ijth entry is probability that the machine is in the jth state at time ¢t + 1 given it was in state
i at time ¢. (Here state 1 is working and state 2 is broken.)

(b) Suppose that on day 1, the machine is working. What is the probability that it is working on day 3?7



Solution:

We are trying to find P(X3 = W | X1 = W). From the law of total probability, and then plugging in the
values from our transition matrix:

1€S
P(Xs=W | Xo= W)P(Xoa =W | X1 = W)+ P(Xs =W | Xo = B) P(Xs = B | X; = W)
P(Xs = W | Xo = W) (1—0) + B(Xs =W | X = B) b
— (= b)(1—b) +rb
(1—0)*+7rb

(c) As n — oo, what does the probability that the machine is working on day n converge to? To get the
answer, solve for the stationary distribution.

Solution:

The stationary distribution is the row vector m = [my mp| such that 7P = 7. The entries in the vector
mw and wp can be interpreted as the probabilities that the machine works or is broken converge to.
As such, my + mp = 1. Additionally, multiplying the stationary distribution by the TPM gives us the
following two equations:

mw = mw (1l —b) + 7pr g =7mwb+ (1l —71)

Solving each for 7wy and 7p gives us the following solutions for the stationary distribution:

r b
b+rr P T bt

So, as n — oo the probability that the machine works on day n is Ty =

W =

_r
b+r

8. Another Markov chain
Suppose that the following is the transition probability matrix for a 4 state Markov chain (states 1,2,3,4).

0 1/2 1/2 0
1/3 0 0 2/3
1/3 1/3 0 1/3
1/5 2/5 2/5 0

P =

(a) What is the probability that Xs = 4 given that Xy =47

Solution:

Let's denote the state space S = {1,2,3,4}. Using the law of total probability we can determine that

P(Xy=4|Xo=4)=)> P(Xy=4|Xo=4X; =i)P(X; =i | Xo=4)

€S
=Y P(Xo=4|X;=i)P(X; =i|Xo=4)
€S
2 2 21
_2
5

(b) Write down the system of equations that the stationary distribution must satisfy and solve them.



Solution:

The stationary distribution is the row vector m = [m my w3 m4] such that 7P = m. We know that
w1 + mo + w3 + w4 = 1. Additionally, multiplying the stationary distribution by the TPM gives us the
following equations:

7T1:§7T2+§7r3+57r4
7T2:§7T1+§7T3+g7r4
1 +2
7T3—27T1 57T4
2 +1
Ty = =T —TT
4= 3M2 5

Solving for each 7; gives us the following solutions for the stationary distribution:

46 60 45 55

76 T 206 T 206 7 206

9. Three tails

You flip a fair coin until you see three tails in a row. Model this as a Markov chain with the following states:

S start state, which we are only in before flipping any coins.

H: We see a heads, which means no streak of tails currently exists.
T We've seen exactly one tail in a row so far.

TT: We've seen exactly two tails in a row so far.

TTT: We've accomplished our goal of seeing three tails in a row and stop flipping.

Write down the transition probability matrix.
Solution:

1/2 1/2 0 0
1/2 1/2 0 0
1/2 0 1/2 0
12 0 0 1/2
0o 0 0 1

Y
Il
coooo

Write down the system of equations whose variables are D(s) for each state s € {S,H,T,TT,TTT},
where D(s) is the expected number of steps until state 77T is reached starting from state s. Solve this
system of equations to find D(S).



10.

Solution:

Using the law of total expectation and the TPM above we can set up and solve the following system of
equations:

D(TTT) =0
D(TT) = 1+ %D(H) 4 %D(TTT) - %D(H) +1
D(T) =1+ %D(H) + %D(TT) - ZD(H) + ;
D(H) =1+ %D(H) - %D(T) — gD(H) n Z
D(S) =1+ g D(H) + L D(T) = L D(i) + &

Solving for D(H) gives us that D(H) = 14, which allows as to solve for the rest of the expected number
of steps, D(TT) =8, D(T) =12, D(S) = 14. So, we expect to flip 14 coins before we flip three tails in
a row.

Write down the system of equations whose variables are v(s) for each state s € {S,H,T,TT,TTT},
where 7(s) is the expected number of heads seen before state TT'T is reached. Solve this system to find
~(S), the expected number of heads seen overall until getting three tails in a row.

Solution:

Like in the previous part we can use the LoTE and the TPM to set up and solve the follwoing system of
equations:

)=0
VTT) = 0.5v(H) + 0.5v(TTT) = 0.5v(H)
(T = 0.57(H) + 0.5v(TT) = 0.75v(H)

) =1+ 0.5v(H) + 0.5v(T) = 0.875y(H) + 1
v(S) = 0.5v(H) + 0.5v(T") = 0.875v(H)

Solving for v(H) gives us v(H) = 8. This allows us to solve for the other expected values which are
Y(TT) =4, v(T) =6, v(S) =7. So, we expect to see 7 heads before we flip three tails in a row.

What if we lose ?

[This is practice with earlier material] Suppose 59 percent of voters favor Proposition 600. Use the Normal
approximation to estimate the probability that a random sample of 100 voters will contain:

(a)

at most 50 in favor. Mention any assumption that you make.

Solution:

We will make an assumption here. We will assume that the i*" person is in favor of the proposition with

probability 15—(%. We define X; ~ Bernoulli(%) representing whether the i*" person is in favor or not.

We define X = Zg? X, representing the number of people who are in favor of the proposition. We can

approximate X by Y ~ N(100-0.59,100 - 0.242). We need to find P(\;(;fz) < E%ZZZ?)(after continuity

correction and standardization) which is equal to ®(—1.729).

more than 100 voters in favor or fewer than 0 voters in favor (again based on this normal approximation).
Will the probability be non zero?



Solution:

We will use our normal approximation Y from part(a). We are interested in P(Y < —0.5) + P(Y >
100.5)(after continuity correction) which is the same as

Y-59 —-0.5-259 Y —59 _ 100.5—59
P < +P > = ®(-12.09) + 1 — $(8.436
( V24.2 V24.2 ) ( V24.2 V24.2 ) ( ) ( )

. Yes, the probability will be non -zero because the density of the normal distribution is non-zero every-
where. Note that this result is acceptable because the normal distribution is an approximation.

Law of Total Probability Review

(Discrete version) Suppose we flip a coin with probability U of heads, where U is equally likely to be one
of Qu = {0, %, %, ..., 1} (notice this set has size n + 1). Let H be the event that the coin comes up

heads. What is P(H)?

Solution:

We can use the law of total probability, conditioning on U = % for k =0, ...,n. Note that the probability
of getting heads conditioning on a fixed U value is U, and that the probability of U taking on any value

in its range is ;-7 since it is discretely uniform.

Eo <k 1 1

Y S SO S L et
P(H)—kZ:OIP’(HIU—n)P(U ) n n+l nn+1)

I{]: = —
nn+1) 2 2

k=0 k=0

(Continuous version) Now suppose U ~ Uniform(0,1) has the continuous uniform distribution over the
interval [0, 1]. What is P(H)?

Solution:

We do the same thing, this time using the continuous law of total probability. Note, this time, that we're
conditioning on U = w and taking the integral with respect to u, and that the density of U for any value
in its range is 1 because it is uniformly random.

P(H) = /_OO P(H|U = u) fu(u)du

We can take the integral from 0 to 1 instead because outside of that range the density of U is 0.

1

: ! 1 271
= [ e == [ w0 = )

Let’s generalize the previous result we just used. Suppose E is an event, and X is a continuous random
variable with density function fx(z). Write an expression for P(E), conditioning on X.

Solution:

We use the continuous law of total probability again, this time not deriving it any further and sticking
with negative infinity to infinity because we don't know the range of the RV X.

o0

P(E) = / P(E|X =z)fx(x)dz

—00



12. Poisson CLT practice

Suppose X1, ..., X, are iid Poisson(\) random variables, and let X, = %E?:lXi, the sample mean. How
large should we choose n to be such that IP’(% <X,< %) > 0.997 Use the CLT and give an answer involving
®~1(-). Then evaluate it exactly when A = 1/10 using the ® table on the last page.

Solution:

We know E[X;] = Var(X;) = \. By the CLT, X,, = N (), 2), so we can standardize this normal approximation.

A = 3\ —)\2 A2 A2\ A2
P(2§Xn§2)NP(\/)\/n§Z§w//\/n)_q)<s/)\/n) (b(\/)\/n)

q)(%) . <¢<%>> :2@(%%20%@(%) > 099
— \?\/ﬁz ®1(0.995) — n > % (@1 (0.995)]2

We have A = {5 and from the table, ! (0.995) ~ 2.575 so that n > ﬁ - 2.5752 = 265.225. So n = 266 is
the smallest value that will satisfy the condition.

13. Tail bounds
Suppose X ~ Binomial(6,0.4). We will bound P(X > 4) using the tail bounds above, and compare this to the
true result.

(a) Give an upper bound for this probability using Markov's inequality. Why can we use Markov's inequality?

Solution:

We know that the expected value of a binomial distribution is np, so: P(X >4) < =7 = =7 = 0.6. We
can use it since X is nonnegative.

(b) (optional) Give an upper bound for this probability using Chebyshev's inequality. You may have to
rearrange algebraically and it may result in a weaker bound.

Solution:

P(X >4)=P(X —24>1.6) <P(|X —2.4] > 1.6) we can add those absolute value signs because that
only adds more possible values, so it is an upper bound on the probability of X — 2.4 > 1.6. Then, using
Chebyshev’s inequality we get:

P(|X —2.4] > 1.6) < Y200 — L4 _ ( 5625

(c) (optional) Give an upper bound for this probability using the Chernoff bound.

Solution:
P(X >4) =P(X > (1 +2)24) < e—(3)2HX]/3 _ ,—4x2.4/2T o, () 7

(d) Give the exact probability.

Solution:

Since X is a binomial, we know it has a range from 0 to n (or in this case 0 to 6). Thus, the possible
values to satisfy X > 4 are 4, 5, or 6. We plug in the PMF for each to get: P(X > 4) = P(X =
4) +P(X =5) + P(X = 6) = (5)(0.4)4(0.6)% + (£)(0.4)°(0.6) + (5)0.4% ~ 0.1792

10



14. MAP Estimation (bonus material that we will not cover)
Read sections 7.4 and 7.5, if you're interested. Let x1, ..., x, be iid realizations from a distribution with common
pmf px (x;0) where 0 is an unknown but fixed parameter. Let’s call the event {X; = 21, ..., X}, = x,} = D for
data. You may wonder why in MLE, we seek to maximize the likelihood L(D | 6), rather than P(¢ | D). This is
because it doesn't make sense to compute P(0), since 0 is fixed. However, in Maximum a Posteriori (MAP)
estimation, we assume the parameter is a random variable (denoted ©), and attempt to maximize mg (6 | D),
where 7g is the pmf or pdf of ©, depending on whether © is continuous or discrete. Using Bayes Theorem,
we get mg(0 | D) = %. To maximize the LHS with respect to #, we may ignore the denominator on
the RHS since it is constant with respect to 6. Hence MAP seeks to maximize mg(f | D) o< L(D | 8)me(0).
We call mg (@) the prior distribution on the parameter ©, and g (6 | D) the posterior distribution on ©. MLE
maximizes the likelihood, and MAP maximizes the product of the likelihood and the prior. If the prior is uniform,
we will see that MAP is the same as MLE (since mg(#) won't depend on 6).
(a) Suppose we have the samples 1 = 0,29 = 0,23 = 1,24 = 1,25 = 0 from the Bernoulli(#) distribution,
where 6 is unknown. Assume 6 is unrestricted; that is, 6 € (0,1). What is Orre?

Solution:

We begin with finding the likelihood by multiplying the probabilities of seeing each of the independent
realizations from the Ber(0) distribution. From there, we just use the MLE process to get the log-likelihood,
take the first derivative, set it equal to 0, and solve for 0y 5.

L(xy,...,z5] 0) = 6*1—-6)3
InL(z1,...,2z5| 0) = 2In(d) +3In(l —6)

0 2 3
I L (e, ... S -
2 —20 =230
A 2
Ovie = v

(b) Suppose we impose that 6 € {0.2,0.5,0.7}. What is OriLe?

Solution:

We can compute L(D | ) for each value of 6, and take the largest.
L(D|0.2) = (1 -0.2)3(0.2)% = 0.02048

L(D ] 0.5) = (1 — 0.5)3(0.5)2 = 0.03125

L(D|0.7) = (1 -0.7)3(0.7)% = 0.01323

SO éMLE‘ :.

(c) Assume © is restricted as in part (b) (now a random variable for MAP). Assume a (discrete) prior of
71'@(0.2) = 0.1,#@(0.5) = 0.01,7‘&’@(0.7) = 0.89. What is Oy 4p7

Solution:

We compute the objective to maximize for MAP:

76(0.2 | D) x L(D | 0.2)me(0.2) = 0.02048 - 0.1 = 0.002048
76(0.5| D) < L(D | 0.5)me(0.5) = 0.03125 - 0.01 = 0.0003125
70(0.7 | D) x L(D | 0.7)me(0.7) = 0.01323 - 0.89 = 0.0117747

Hence éMAp = .

(d) Show that we can make the MAP estimator whatever we want it to be. That is, for each of the three
candidate parameters above, find a prior distribution on © such that the MAP estimate is that parameter.

11



Solution:

Just assign a prior of 1 to the desired parameter. If you don’t want something degenerate, assign a prior
extremely close to 1, and give uniform probability to the other parameters.

Typically, for the Bernoulli/Binomial distribution, if we use MAP, we want to be able to get any value
6 € (0,1) (not just ones in a finite set such as {0.2,0.5,0.7}). So we assign 6 the Beta distribution with
parameters a, 3 > 0 and density g (0) = c0°~1(1—6)"~! for § € (0, 1) and 0 otherwise as a prior, where ¢
is a normalizing constant which has a complicated form. The mode of a W ~ Beta(«, /3) random variable
is given as #51_2 (the mode is the value with the highest density = arg mMaXy,e(0,1) fw(w)). Suppose
T1,..., 2Ty are iid samples from the Bernoulli distribution with unknown parameter, where > | z; = k.
Recall that the MLE is k/n. Show that the posterior mg(6 | D) has a Beta(k + a,n — k + 3) density,
and find the MAP estimator for ©. (Hint: use the mode given). Notice that Beta(1, 1) = Uniform(0, 1).
If we had this prior, how would the MLE and MAP estimates compare?

Solution:

We want to maximize g (6 | D) o< L(D | §)me(8) o (0%(1 — 6)"F) (02711 —6)°~1) = glhta)—1(1 —
0)("=k+8)=1 " Hence the posterior ~ Beta(k + a,n — k 4+ 8). We are given the mode of any beta
k+a—-1
n+a+p—2
and Beta(1, 1) = Uniform(0, 1), so having a uniform prior causes the MLE to equal the MAP estimate.

distribution, so our estimate is éMAp = . If @« = 8 =1, then this is exactly the MLE,

Since the posterior is also a Beta distribution, we call the Beta distribution the conjugate prior to the
Bernoulli/Binomial distribution. Intepret what the parameters «, 5 mean as to the prior.

Solution:

a — 1 is the number of heads you pretend to see beforehand, and 5 — 1 is the number of tails you

pretend to see beforehand. Why is this? Because our MLE was £ (heads/trials), and the MAP estimate
k+a—1 _ k+(a—1)

n+(a+p-2) = n+(a—1)+(8-1

and the other 8 — 1 which are tails. This should look familiar as our estimates for P(word | spam) and

P(word | ham) with a Beta(2,2) prior when we did smoothing for Naive Bayes.

is j- Hence we add o+ 5 —2 "fake" trials, v—1 which are heads (numerator),

Which do you think is “better", MLE or MAP?

Solution:

There is no right answer. There are two main schools in statistics: Bayesians and Frequentists. Frequen-
tists prefer MLE since they don’t believe you should be putting a prior belief on anything, and you should
only make judgment based on what you've seen. They believe the parameter being estimated is a fixed
quantity. On the other hand, Bayesians prefer MAP, since they can incorporate their prior knowledge into
the estimation. Hence the parameter being estimated is a random variable, and we seek the mode - the
value with the highest probability or density. An example would be estimating the probability of heads of
a coin - is it reasonable to assume it is more likely fair than not? If so, what distribution should we put
on the parameter space?

Anyway, in the long run, the prior “washes out", and the only thing that matters is the likelihood; the
observed data. For small sample sizes like this, the prior significantly influences the MAP estimate.
However, as the number of samples goes to infinity, the MAP and MLE are equal.
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