
CSE 312: Foundations of Computing II
Section 7: Joint Distributions, Law of Total Expectation (and bit of condi-
tional distributions) Solutions

1. Review of Main Concepts
(a) Multivariate: Discrete to Continuous:

Discrete Continuous
Joint PMF/PDF pX,Y (x, y) = P(X = x, Y = y) fX,Y (x, y) 6= P(X = x, Y = y)

Joint range/support
ΩX,Y {(x, y) ∈ ΩX × ΩY : pX,Y (x, y) > 0} {(x, y) ∈ ΩX × ΩY : fX,Y (x, y) > 0}
Joint CDF FX,Y (x, y) =

∑
t≤x,s≤y pX,Y (t, s) FX,Y (x, y) =

∫ x
−∞

∫ y
−∞ fX,Y (t, s) dsdt

Normalization
∑

x,y pX,Y (x, y) = 1
∫∞
−∞

∫∞
−∞ fX,Y (x, y) dxdy = 1

Marginal PMF/PDF pX(x) =
∑

y pX,Y (x, y) fX(x) =
∫∞
−∞ fX,Y (x, y)dy

Expectation E[g(X,Y )] =
∑

x,y g(x, y)pX,Y (x, y) E[g(X,Y )] =
∫∞
−∞

∫∞
−∞ g(x, y)fX,Y (x, y)dxdy

Independence ∀x, y, pX,Y (x, y) = pX(x)pY (y) ∀x, y, fX,Y (x, y) = fX(x)fY (y)
must have ΩX,Y = ΩX × ΩY ΩX,Y = ΩX × ΩY

(b) Law of Total Probability (r.v. version): If X is a discrete random variable, then

P(A) =
∑
x∈ΩX

P(A|X = x)pX(x) discrete X

(c) Law of Total Expectation (Event Version): Let X be a discrete random variable, and let events
A1, ..., An partition the sample space. Then,

E[X] =
n∑

i=1

E[X | Ai]P(Ai)

(d) Conditional Expectation: See table bbelow. Note that linearity of expectation still applies to conditional
expectation: E[X + Y | A] = E[X | A] + E[Y | A]

(e) Law of Total Expectation (RV Version): Suppose X and Y are random variables. Then,

E[X] =
∑
y

E[X | Y = y] pY (y) discrete version.

(f) Conditional distributions (not realy covered in class)
Discrete Continuous

Conditional PMF/PDF pX|Y (x|y) =
pX,Y (x,y)
pY (y) fX|Y (x|y) =

fX,Y (x,y)
fY (y)

Conditional Expectation E[X | Y = y] =
∑

x xpX|Y (x|y) E[X | Y = y] =
∫∞
−∞ xfX|Y (x|y)dx

(g) The following have not been covered as of 11/17:

• Law of Total Probability (continuous)

P(A) =

∫
x∈ΩX

P(A|X = x)fX(x)dx

• Law of total expectation (continuous)

E[X] =

∫
y∈ΩY

E[X | Y = y] fY (y)dy
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2. Joint PMF’s
Suppose X and Y have the following joint PMF:

X/Y 1 2 3
0 0 0.2 0.1
1 0.3 0 0.4

(a) Identify the range of X (ΩX), the range of Y (ΩY ), and their joint range (ΩX,Y ).

Solution:
ΩX = {0, 1}, ΩY = {1, 2, 3}, and ΩX,Y = {(0, 2), (0, 3), (1, 1), (1, 3)}

(b) Find the marginal PMF for X, pX(x) for x ∈ ΩX .

Solution:

pX(0) =
∑
y

pX,Y (0, y) = 0 + 0.2 + 0.1 = 0.3

pX(1) = 1− pX(0) = 0.7

(c) Find the marginal PMF for Y , pY (y) for y ∈ ΩY .

Solution:

pY (1) =
∑
x

pX,Y (x, 1) = 0 + 0.3 = 0.3

pY (2) =
∑
x

pX,Y (x, 2) = 0.2 + 0 = 0.2

pY (3) =
∑
x

pX,Y (x, 3) = 0.1 + 0.4 = 0.5

(d) Are X and Y independent? Why or why not?

Solution:
No, since a necessary condition is that ΩX,Y = ΩX × ΩY .

(e) Find E
[
X3Y

]
.

Solution:
Note that X3 = X since X takes values in {0, 1}.

E
[
X3Y

]
= E[XY ] =

∑
(x,y)∈ΩX,Y

xypX,Y (x, y) = 1 · 1 · 0.3 + 1 · 3 · 0.4 = 1.5
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3. Trinomial Distribution
A generalization of the Binomial model is when there is a sequence of n independent trials, but with three
outcomes, where P(outcome i) = pi for i = 1, 2, 3 and of course p1 + p2 + p3 = 1. Let Xi be the number of
times outcome i occurred for i = 1, 2, 3, where X1 +X2 +X3 = n. Find the joint PMF pX1,X2,X3(x1, x2, x3)
and specify its value for all x1, x2, x3 ∈ R.
Solution:
Same argument as for the binomial PMF:

pX1,X2,X3(x1, x2, x3) =

(
n

x1, x2, x3

) 3∏
i=1

pxi
i =

n!

x1!x2!x3!
px1
1 px2

2 px3
3

where x1 + x2 + x3 = n and are nonnegative integers.

4. Do You “Urn” to Learn More About Probability?
Suppose that 3 balls are chosen without replacement from an urn consisting of 5 white and 8 red balls. Let
Xi = 1 if the i-th ball selected is white and let it be equal to 0 otherwise. Give the joint probability mass
function of

(a) X1, X2

(b) X1, X2, X3

5. Successes
Consider a sequence of independent Bernoulli trials, each of which is a success with probability p. Let X1 be
the number of failures preceding the first success, and let X2 be the number of failures between the first 2
successes. Find the joint pmf of X1 and X2. Write an expression for E[

√
X1X2]. You can leave your answer

in the form of a sum.
Solution:
X1 and X2 take on two particular values x1 and x2, when there are x1 failures followed by one success, and
then x2 failures followed by one success. Since the Bernoulli trials are independent the joint pmf is

pX1,X2(x1, x2) = (1− p)x1p · (1− p)x2p = (1− p)x1+x2p2

for (x1, x2) ∈ ΩX1,X2 = {0, 1, 2, . . .} × {0, 1, 2, . . .}. By the definition of expectation

E[
√
X1X2] =

∑
(x1,x2)∈ΩX1,X2

√
x1x2 · (1− p)x1+x2p2.

6. Continuous joint density I
The joint probability density function of X and Y is given by

fX,Y (x, y) =

{
6
7

(
x2 + xy

2

)
0 < x < 1, 0 < y < 2

0 otherwise.

(a) Verify that this is indeed a joint density function.

(b) Compute the marginal density function of X.

(c) Find Pr(X > Y ). (Uses the continuous law of total probability which we have not covered in class as of
11/17.)

(d) Find P (Y > 1
2 |X < 1

2).

(e) Find E(X).

(f) Find E(Y )
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Solution:
(a) A joint density function will integrate to 1 over all possible values. Thus, we integrate over the joint range

range using Wolfram Alpha, and see that:∫ ∞

−∞

∫ ∞

−∞
fX,Y (x, y)dxdy =

∫ 2

0

∫ 1

0

6

7
(x2 +

xy

2
)dxdy = 1

We also need to check that the density is nonnegative, but that is easily seen to be true.

(b) We apply the definition of the marginal density function of X, using the fact that we only need to integrate
over the values where the joint density is positive:

fX(x) =

{∫ 2
0

6
7(x

2 + xy
2 )dy = 6

7x(2x+ 1) 0 < x < 1

0 otherwise.

(c) First, we rearrange our initial probability. Then, by the continuous law of total probability:

P(X > Y ) = 1− P(X ≤ Y ) = 1−
∫ ∞

−∞
P(X ≤ Y |Y = y)fY (y)dy = 1−

∫ ∞

−∞
P(X ≤ y)fY (y)dy

Once again, we can instead integrate over just the range of y, getting:

1−
∫ 2

0
P(X ≤ y)fY (y)dy

We have to remember that fX(x) is positive only when 0 < x < 1. Thus, FX(x) = 1 for x ≥ 1, so we
have:

1−
∫ 1

0
P(X ≤ y)fY (y)dy −

∫ 2

1
fY (y)dy

So, now we just need to find the CDF of X, and the marginal PDF of Y . For the former, for any
0 < x < 1, we have

FX(x) =

∫ x

0

6

7
u(2u+ 1)du =

1

7
x2(4x+ 3)

For the latter, for 0 < y < 2, we have

fY (y) =

∫ 1

0

6

7
(x2 +

xy

2
)dx =

1

14
(3y + 4)

Putting these together, we get that:

P(X > Y ) = 1−
∫ 1

0

1

7
y2(4y+ 3)

1

14
(3y+ 4)dy−

∫ 2

1

1

14
(3y+ 4)dy = 1− 253

1960
− 17

28
=

517

1960
= 0.2638

(d) By the definition of conditional probability:

P
(
Y >

1

2
|X <

1

2

)
=

P(Y > 1
2 , X < 1

2)

P(X < 1
2)

For the numerator, we have

P(Y >
1

2
, X <

1

2
) =

∫ ∞

1/2

∫ 1/2

−∞
fX,Y (x, y)dxdy

=

∫ 2

1/2

∫ 1/2

0

6

7

(
x2 +

xy

2

)
dxdy =

69

448

4



For the denominator, we can integrate using the marginal distribution that we found before:∫ 1/2

0

6

7
x(2x+ 1)dx =

5

28

Putting these together, we get:

P(Y >
1

2
|X <

1

2
) =

69
448
5
28

= 0.8625

(e) By definition, and using ΩX = (0, 1):

E[X] =

∫ 1

0
fX(x)xdx =

∫ 1

0

6

7
x(2x+ 1)xdx =

5

7

(f) By definition, and using ΩY = (0, 2):

E[Y ] =

∫ 2

0
fY (y)ydy =

∫ 2

0

1

14
(3y + 4)ydy =

8

7

7. Continuous joint density II
The joint density of X and Y is given by

fX,Y (x, y) =

{
xe−(x+y) x > 0, y > 0

0 otherwise.

and the joint density of W and V is given by

fW,V (w, v) =

{
2 0 < w < v, 0 < v < 1

0 otherwise.

Are X and Y independent? Are W and V independent?
Solution:
For two random variables X,Y to be independent, we must have fX,Y (x, y) = fX(x)fY (y) for all x ∈ ΩX , y ∈
ΩX . Let’s start with X and Y by finding their marginal PDFs. By definition, and using the fact that the joint
PDF is 0 outside of y > 0, we get:

fX(x) =

∫ ∞

0
xe−(x+y)dy = e−xx

We do the same to get the PDF of Y , again over the range x > 0:

fY (y) =

∫ ∞

0
xe−(x+y)dx = e−y

Since e−xx · e−y = xe−x−y = xe−(x+y) for all x, y > 0, X and Y are independent.

We can see that W and V are not independent simply by observing that ΩW = (0, 1) and ΩV = (0, 1), but
ΩW,V is not equal to their Cartesian product. Specifically, looking at their range of fW,V (w, v). Graphing it
with w as the "x-axis" and v as the "y-axis", we see that :
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The shaded area is where the joint pdf is strictly positive. Looking at it, we can see that it is not rectangular,
and therefore it is not the case that ΩW,V = ΩW×ΩV . Remember, the joint range being the Cartesian product
of the marginal ranges is not sufficient for independence, but it is necessary. Therefore, this is enough to show
that they are not independent.

8. Trapped Miner
A miner is trapped in a mine containing 3 doors.

• D1: The 1st door leads to a tunnel that will take him to safety after 3 hours.

• D2: The 2nd door leads to a tunnel that returns him to the mine after 5 hours.

• D3: The 3rd door leads to a tunnel that returns him to the mine after a number of hours that is Binomial
with parameters (12, 13).

At all times, he is equally likely to choose any one of the doors. What is the expected number of hours for this
miner to reach safety?

Solution:
Let T = number of hours for the miner to reach safety. (T is a random variable)
Let Di be the event the ith door is chosen. i ∈ {1, 2, 3}. Finally, let T3 be the time it takes to return to
the mine in the third case only (a random variable). Note that the expectation of T3 is 12 ∗ 1

3 because it is
binomially distributed with parameters n = 12, p = 1

3 . By Law of Total Expectation, linearity of expectation,
and by applying the conditional expectations given by the problem statement:

E[T ] = E[T | D1]P(D1) + E[T | D2]P(D2) + E[T | D3]P(D3)

= 3 · 1
3
+ (5 + E[T ]) · 1

3
+ (E[T3 + T ]) · 1

3

= 3 · 1
3
+ (5 + E[T ]) · 1

3
+ (E[T3] + E[T ]) · 1

3

= 3 · 1
3
+ (5 + E[T ]) · 1

3
+ (4 + E[T ]) · 1

3

Solving this equation for E[T ], we get

E[T ] = 12

Therefore, the expected number of hours for this miner to reach safety is 12.
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9. Elevator
[We have done this problem in class.] The number of people who enter an elevator on the ground floor is a
Poisson random variable with mean 10. If there are N floors above the ground floor, and if each person is equally
likely to get off at any one of the N floors, independently of where the others get off, compute the expected
number of stops that the elevator will make before discharging all the passengers. Assume an infinitely large
elevator.
Solution:
Let X = number of people who enter the elevator. X ∼ Poi(10). Let Y = number of stops. (X, Y are both
random variables)

E[Y ] =
∞∑
k=0

E[Y |X = k]P(X = k)

P(X = k) = e−λλ
k

k!
= e−10 10

k

k!

Let Yi be an indicator random variable. Yi = whether the elevator stops at the ith floor.

E[Y | X = k] = E[Y1 + Y2 + ...+ YN |X = k]

E[Yi | X = k] = 1− (
N − 1

N
)k

By linearity of expectation:

E[Y | X = k] =
N∑
i=1

E[Yi | X = k] = N · (1− (
N − 1

N
)k)

Finally, we put everything together:

E[Y ] =

∞∑
k=0

(N · (1− (
N − 1

N
)k)) · (e−10 10

k

k!
)

10. Lemonade Stand
Suppose I run a lemonade stand, which costs me $100 a day to operate. I sell a drink of lemonade for $20. Every
person who walks by my stand either buys a drink or doesn’t (no one buys more than one). If it is raining, n1

people walk by my stand, and each buys a drink independently with probability p1. If it isn’t raining, n2 people
walk by my stand, and each buys a drink independently with probability p2. It rains each day with probability
p3, independently of every other day. Let X be my profit over the next week. In terms of n1, n2, p1, p2 and p3,
what is E[X]?
Solution:
Let R be the event it rains. Let Xi be how many drinks I sell on day i for i = 1, ..., 7. We are interested
in X =

∑7
i=1 (20Xi − 100). We have Xi|R ∼ Binomial(n1, p1), so E[Xi | R] = n1p1. Similarly, Xi|RC ∼

Binomial(n2, p2), so E
[
Xi | RC

]
= n2p2. By the law of total expectation,

µ = E[Xi] = E[Xi | R]P(R) + E
[
Xi | RC

]
P(RC) = n1p1p3 + n2p2(1− p3)

Hence, by linearity of expectation,

E[X] = E

[
7∑

i=1

(20Xi − 100)

]
= 20

7∑
i=1

E[Xi]− 700 = 140µ− 700
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= 140 · (n1p1p3 + n2p2(1− p3))− 700.

11. Particle Emissions
Suppose we are measuring particle emissions, and the number of particles emitted follows a Poisson distribution
with parameter λ, X ∼ Poisson(λ). Suppose our device to measure emissions is not always entirely accurate
sometimes we fail to observe particles that actually emitted. So for each particle actually emitted, say we have
probability p of actually recording it, independently of other particles. Let Y be the number of particles we
observed. What distribution does Y follow with what parameters, and what is E[Y ]?
Solution:
(We more or less did this problem in class.)

pY (y) = P(Y = y)

=
∞∑
x=y

P(Y = y|X = x)P(X = x) (Law of Total Probability)

=
∞∑
x=y

(
x

y

)
py(1− p)x−y · e−λλ

x

x!
(Plug in Poisson and Binomial PMFs)

= e−λpy
∞∑
x=y

x!

y!(x− y)!
(1− p)x−y λ

x

x!

=
e−λpy

y!

∞∑
x=y

λx

(x− y)!
(1− p)x−y

=
e−λpy

y!

∞∑
k=0

λk+y

k!
(1− p)k (let k = x− y)

=
e−λ(λp)y

y!

∞∑
k=0

(λ(1− p))k

k!

=
e−λ(λp)y

y!
· eλ(1−p) (Taylor series for eλ(1−p))

=
e−pλ(λp)y

y!

(1)

So Y ∼ Poisson(pλ) and E[Y ] = pλ.

12. Variance of the geometric distribution
Independent trials each resulting in a success with probability p are successively performed. Let N be the time
of the first success. Find the variance of N .
Solution:
Let Y = 1 if the first trial results in a success and Y = 0 otherwise. Now

Var(N) = E[N2]− (E[N ])2

To calculate E[N2], we condition on Y as follows:

E[N2] = E[E[N2|Y ]]

However,
E[N2|Y = 1] = 1
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E[N2|Y = 0] = E[(1 +N)2]

These two equations follow because, if the first trial results in a success, then clearly N = 1 and so N2 = 1. On
the other hand, if the first trial results in a failure, then the total number of trials necessary for the first success
will have the same distribution as one (the first trial that results in failure) plus the necessary number of additional
trials. Since the latter quantity has the same distribution as N , we obtain that E[N2|Y = 0] = E[(1 + N)2].
Hence we see that

E[N2] = E[N2|Y = 1]P(Y = 1) + E[N2|Y = 0]P(Y = 0)

= p+ (1− p)E[(1 +N)2]

= 1 + (1− p)E[2N +N2]

Since we know that the expectation of a geometric random variable is given as E[N ] = 1
p , by the Linearity of

Expectation, we then have that

E[N2] = 1 + 2(1− p)E[N ] + (1− p)E[N2]

= 1 +
2(1− p)

p
+ (1− p)E[N2]

E[N2]− (1− p)E[N2] =
2− p

p

E[N2] =
2− p

p2

Therefore,

Var(N) = E[N2]− (E[N ])2

=
2− p

p2
− 1

p2

=
1− p

p2

13. 3 points on a line
(This problem uses the continuous law of total probability which has not yet be covered in class.) Three points
X1, X2, X3 are selected at random on a line L (continuous independent uniform distributions). What is the
probability that X2 lies between X1 and X3?
Solution:
Let X1, X2, X3 ∼ Unif(0, 1).

P(X1 < X2 < X3) =

∫ ∞

−∞
P(X1 < X2 < X3 | X2 = x) fX2(x) dx Continuous LoTP

=

∫ ∞

−∞
P(X1 < x,X3 > x) fX2(x) dx Independence of X1, X2, X3

=

∫ ∞

−∞
P(X1 < x) P(x < X3) fX2(x) dx Independence of X1, X3

=

∫ ∞

−∞
FX1(x) (1− FX3(x)) fX2(x) dx

=

∫ 1

0
x (1− x) 1 dx

=
x2

2
− x3

3

∣∣∣∣1
0

=
1

6

9


