
CSE 312: Foundations of Computing II
Section 5: Variance, Independence of RVs; Zoo of discrete R.V.s Solutions
1. Review of Main Concepts

(a) Variance: Let X be a random variable and µ = E[X]. The variance of X is defined to be Var(X) =
E
[
(X − µ)2

]
. Notice that since this is an expectation of a nonnegative random variable, i.e., (X − µ)2,

variance is always nonnegative. With some algebra, we can simplify this to Var(X) = E
[
X2

]
− E[X]2.

(b) Standard Deviation: Let X be a random variable. We define the standard deviation of X to be the
square root of the variance, and denote it σ =

√
V ar(X).

(c) Property of Variance: Let a, b ∈ R and let X be a random variable. Then, V ar(aX + b) = a2V ar(X).

(d) Independence: Random variable X and event E are independent iff

∀x, P(X = x ∩ E) = P(X = x)P(E)

(e) Independence: Random variables X and Y are independent iff

∀x∀y, P(X = x ∩ Y = y) = P(X = x)P(Y = y)

In this case, we have E[XY ] = E[X]E[Y ] (the converse is not necessarily true).

(f) Independence of functions of a r.v.: If X and Y are independent and g(·), h(·) are functions mapping
real numbers to real numbers, then g(X) and h(Y ) are independent. (See if you can prove this!)

(g) i.i.d. (independent and identically distributed): Random variables X1, . . . , Xn are i.i.d. (or iid) iff
they are independent and have the same probability mass function.

(h) Variance of Independent Variables: If X is independent of Y , Var (X + Y ) = Var (X)+Var(Y ). This
depends on independence, whereas linearity of expectation always holds. Note that this combined with the
above shows that ∀a, b, c ∈ R and if X is independent of Y , Var(aX + bY + c) = a2Var(X) + b2Var(Y ).

2. Review: Zoo of Discrete Random Variables
(a) Uniform: X ∼ Uniform(a, b) (Unif(a, b) for short), for integers a ≤ b, iff X has the following probability

mass function:
pX (k) =

1

b− a+ 1
, k = a, a+ 1, . . . , b

E[X] = a+b
2 and V ar(X) = (b−a)(b−a+2)

12 . This represents each integer from [a, b] to be equally likely.
For example, a single roll of a fair die is Uniform(1, 6).

(b) Bernoulli (or indicator): X ∼ Bernoulli(p) (Ber(p) for short) iff X has the following probability mass
function:

pX (k) =

{
p, k = 1

1− p, k = 0

E[X] = p and V ar(X) = p(1− p). An example of a Bernoulli r.v. is one flip of a coin with P (head) = p.

(c) Binomial: X ∼ Binomial(n, p) (Bin(n, p) for short) iff X is the sum of n iid Bernoulli(p) random variables.
X has probability mass function

pX (k) =

(
n

k

)
pk (1− p)n−k , k = 0, 1, . . . , n

E[X] = np and V ar(X) = np(1 − p). An example of a Binomial r.v. is the number of heads in n
independent flips of a coin with P (head) = p. Note that Bin(1, p) ≡ Ber(p). As n → ∞ and p →
0,with np = λ, then Bin (n, p) → Poi(λ). If X1, . . . , Xn are independent Binomial r.v.’s, where Xi ∼
Bin(Ni, p), then X = X1 + . . .+Xn ∼ Bin(N1 + . . .+Nn, p).
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(d) Geometric: X ∼ Geometric(p) (Geo(p) for short) iff X has the following probability mass function:

pX (k) = (1− p)k−1 p, k = 1, 2, . . .

E[X] = 1
p and V ar(X) = 1−p

p2
. An example of a Geometric r.v. is the number of independent coin flips

up to and including the first head, where P (head) = p.

(e) Poisson: X ∼ Poisson(λ) (Poi(λ) for short) iff X has the following probability mass function:

pX (k) = e−λλ
k

k!
, k = 0, 1, . . .

E[X] = λ and V ar(X) = λ. An example of a Poisson r.v. is the number of people born during a
particular minute, where λ is the average birth rate per minute. If X1, . . . , Xn are independent Poisson
r.v.’s, where Xi ∼ Poi(λi), then X = X1 + . . .+Xn ∼ Poi(λ1 + . . .+ λn).

(f) Negative Binomial : X ∼ NegativeBinomial(r, p) (NegBin(r, p) for short) iff X is the sum of r iid
Geometric(p) random variables. X has probability mass function

pX (k) =

(
k − 1

r − 1

)
pr (1− p)k−r , k = r, r + 1, . . .

E[X] = r
p and V ar(X) = r(1−p)

p2
. An example of a Negative Binomial r.v. is the number of independent

coin flips up to and including the rth head, where P (head) = p. If X1, . . . , Xn are independent Negative
Binomial r.v.’s, where Xi ∼ NegBin(ri, p), then X = X1 + . . .+Xn ∼ NegBin(r1 + . . .+ rn, p).

(g) Hypergeometric : X ∼ HyperGeometric(N,K, n) (HypGeo(N,K, n) for short) iff X has the following
probability mass function:

pX (k) =

(
K
k

)(
N−K
n−k

)(
N
n

) , k = max{0, n+K −N}, . . . ,min {K,n}

E[X] = nK
N . This represents the number of successes drawn, when n items are drawn from a bag with

N items (K of which are successes, and N − K failures) without replacement. If we did this with
replacement, then this scenario would be represented as Bin

(
n, KN

)
.

3. Pond Fishing
Suppose I am fishing in a pond with B blue fish, R red fish, and G green fish, where B + R + G = N . For
each of the following scenarios, identify the most appropriate distribution (with parameter(s)):

(a) how many of the next 10 fish I catch are blue, if I catch and release

Solution:
Since this is the same as saying how many of my next 10 trials (fish) are a success (are blue), this is a
binomial distribution. Specifically, since we are doing catch and release, the probability of a given fish
being blue is B

N and each trial is independent. Thus:

Bin
(
10,

B

N

)
(b) how many fish I had to catch until my first green fish, if I catch and release
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Solution:
Once again, each catch is independent, so this is asking how many trials until we see a success, hence it
is a geometric distribution:

Geo
(
G

N

)
(c) how many red fish I catch in the next five minutes, if I catch on average r red fish per minute

Solution:
This is asking for the number of occurrences of event given an average rate, which is the definition of the
Poisson distribution. Since we’re looking for events in the next 5 minutes, that is our time unit, so we
have to adjust the average rate to match (r per minute becomes 5r per 5 minutes).

Poi(5r)

(d) whether or not my next fish is blue

Solution:
This is the same as the binomial case, but it’s only one trial, so it is necessarily Bernoulli.

Ber
(
B

N

)
(e) how many of the next 10 fish I catch are blue, if I do not release the fish back to the pond after each

catch

Solution:
This is a hypergeometric r.v. Its definition is the number of successes in n draws (without replacement)
from N items that contain K successes in total. In this case, we have 10 draws (without replacement
because we do not catch and release), and out of the N fish, B are blue (a success).

HypGeo(N,B, 10)

(f) how many fish I have to catch until I catch three red fish, if I catch and release

Solution:
This is a negative binomial r.v. It models the number of trials with probability of success p, until you get
r successes. In this case, as before, our trials are caught fish (with replacement this time) and our success
is if the fish are red, which happens with probability R

N .

NegBin
(
3,

R

N

)
4. Best Coach Ever!!
You are a hardworking boxer. Your coach tells you that the probability of your winning a boxing match is 0.2
independently of every other match.

(a) How many matches do you expect to fight until you win 10 times and what kind of random variable is
this?
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Solution:
The number of matches you have to fight until you win 10 times can be modeled by

∑10
i=1Xi where

Xi ∼ Geometric(0.2) is the number of matches you have to fight to go from i − 1 wins to i wins,
including the match that gets you your ith win, where every match has a 0.2 probability of success. Recall
E[Xi] =

1
0.2 = 5. E

[∑10
i=1Xi

]
=

∑10
i=1 E[Xi] =

∑10
i

1
0.2 = 10 · 5 = 50.

Note that since X =
∑10

i=1Xi is the sum of iid geometric random variables, we instead could’ve said that
X ∼ NegBin(10, 0.2) and found that E[X] = 10

0.2 = 50, the same as above.

(b) You only get to play 12 matches every year. To win a spot in the Annual Boxing Championship, a boxer
needs to win at least 10 matches in a year. What is the probability that you will go to the Championship
this year and what kind of random variable is the number of matches you win out of the 12?

Solution:
You can go to the championship if you win more than or equal to 10 times this year. Let Y be the number
of matches you win out of the 12 matches. Note that Y ∼ Binomial(12, 0.2). Since the max number you
can win is 12 (there are 12 matches), we are looking for P (10 ≤ Y ≤ 12). Thus, since Y is discrete, we
are interested in

P(Y = 10) + P(Y = 11) + P(Y = 12) =
12∑

i=10

(
12

i

)
0.2i(1− 0.2)12−i ≈ 0.0000045

(c) Let p be your answer to part (b). How many times can you expect to go to the Championship in your 20
year career?

Solution:
The number of times you go to the championship can be modeled by Y ∼ Binomial(20, p). So, E[Y ] =
20 · p.

5. Variance of a Product
Let X,Y, Z be independent random variables with means µX , µY , µZ and variances σ2

X , σ2
Y , σ

2
Z , respectively.

Find V ar(XY − Z).
Solution:
First notice that V ar(X) = E

[
X2

]
− E[X]2 =⇒ E

[
X2

]
= V ar(X) + E[X]2 = σ2

X + µ2
X , and same for Y .

V ar(XY ) = E
[
X2Y 2

]
− E[XY ]2 (by theorem in class)

= E
[
X2

]
E
[
Y 2

]
− (E[X]E[Y ])2(by independence)

= E
[
X2

]
E
[
Y 2

]
− E[X]2 E[Y ]2

= (σ2
X + µ2

X)(σ2
Y + µ2

Y )− µ2
Xµ2

Y

By independence,
V ar(XY − Z) = V ar(XY ) + V ar(−Z) = V ar(XY ) + V ar(Z)

= (σ2
X + µ2

X)(σ2
Y + µ2

Y )− µ2
Xµ2

Y + σ2
Z

6. True or False?
Identify the following statements as true or false (true means always true). Justify your answer.

(a) For any random variable X, we have E
[
X2

]
≥ E[X]2.
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Solution:
True, since 0 ≤ V ar(X) = E

[
(X − E[X])2

]
, since the squaring necessitates the result is non-negative.

(b) Let X,Y be random variables. Then, X and Y are independent if and only if E[XY ] = E[X]E[Y ].

Solution:
False. The forward implication is true, but the reverse is not. For example, if X ∼ Uniform(−1, 1) (equally
likely to be in {−1, 0, 1}), and Y = X2, we have E[X] = 0, so E[X]E[Y ] = 0. However, since X = X3

(why?), E[XY ] = E
[
XX2

]
= E

[
X3

]
= E[X] = 0, we have that E[X]E[Y ] = 0 = E[XY ]. However, X

and Y are not independent; indeed, P(Y = 0|X = 0) = 1 6= 1
3 = P(Y = 0).

(c) Let X ∼ Binomial(n, p) and Y ∼ Binomial(m, p) be independent. Then, X + Y ∼ Binomial(n+m, p).

Solution:
True. X is the sum of n independent Bernoulli trials, and Y is the sum of m. So X + Y is the sum of
n+m independent Bernoulli trials, so X + Y ∼ Binomial(n+m, p).

(d) Let X1, ..., Xn+1 be independent Bernoulli(p) random variables. Then, E[
∑n

i=1XiXi+1] = np2.

Solution:
True. Notice that XiXi+1 is also Bernoulli (only takes on 0 and 1), but is 1 iff both are 1, so XiXi+1 ∼
Bernoulli(p2). The statement holds by linearity, since E[XiXi+1] = p2.

(e) Let X1, ..., Xn+1 be independent Bernoulli(p) random variables. Then, Y =
∑n

i=1XiXi+1 ∼ Binomial(n, p2).

Solution:
False. They are all Bernoulli p2 as determined in the previous part, but they are not independent. Indeed,
P(X1X2 = 1|X2X3 = 1) = P(X1 = 1) = p 6= p2 = P(X1X2 = 1).

(f) If X ∼ Bernoulli(p), then nX ∼ Binomial(n, p).

Solution:
False. The range of X is {0, 1}, so the range of nX is {0, n}. nX cannot be Bin(n, p), otherwise its
range would be {0, 1, ..., n}.

(g) If X ∼ Binomial(n, p), then X
n ∼ Bernoulli(p).

Solution:
False. Again, the range of X is {0, 1, ..., n}, so the range of X

n is {0, 1
n ,

2
n , ..., 1}. Hence it cannot be

Ber(p), otherwise its range would be {0, 1}.

(h) For any two independent random variables X,Y , we have V ar(X − Y ) = V ar(X)− V ar(Y ).

Solution:
False. V ar(X − Y ) = V ar(X + (−Y )) = V ar(X) + (−1)2V ar(Y ) = V ar(X) + V ar(Y ).
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7. Fun with Poissons
Let X ∼ Poisson(λ1) and Y ∼ Poisson(λ2), and X and Y are independent.

(a) [This was done in class.] Show that X + Y ∼ Poisson(λ1 + λ2)

Solution:
To show that a random variable is distributed according to a particular distribution, we must show that
they have the same PMF. Thus, we are trying to show that P (X + Y = n) = e−(λ1+λ2) (λ1+λ2)n

n!

P (X + Y = n) =
n∑

k=0

P (X = k ∩ Y = n− k)

=
n∑

k=0

P (X = k)P (Y = n− k) [X and Y are independent]

=
n∑

k=0

e−λ1
λk
1

k!
e−λ2

λn−k
2

(n− k)!

= e−(λ1+λ2)
n∑

k=0

λk
1

k!

λn−k
2

(n− k)!

= e−(λ1+λ2)
n∑

k=0

1

k!(n− k)!
λk
1λ

n−k
2

=
e−(λ1+λ2)

n!

n∑
k=0

n!

k!(n− k)!
λk
1λ

n−k
2

=
e−(λ1+λ2)

n!

n∑
k=0

(
n

k

)
λk
1λ

n−k
2

=
e−(λ1+λ2)

n!
(λ1 + λ2)

n [Binomial Theorem]

(b) Show that P (X = k | X + Y = n) = P (W = k) where W ∼ Bin(n, λ1
λ1+λ2

)
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Solution:

P (X = k | X + Y = n) =
P (X = k ∩X + Y = n)

P (X + Y = n)

=
P (X = k ∩ Y = n− k)

P (X + Y = n)

=
P (X = k)P (Y = n− k)

P (X + Y = n)
[X and Y are independent]

=
e−λ1

λk
1
k! · e

−λ2
λn−k
2

(n−k)!

e−(λ1+λ2) (λ1+λ2)n

n!

=

λk
1
k! ·

λn−k
2

(n−k)!

(λ1+λ2)n

n!

=
n!

k!(n− k)!
· λk

1λ
n−k
2

(λ1 + λ2)n

=

(
n

k

)
λk
1 λn−k

2

(λ1 + λ2)k (λ1 + λ2)n−k

=

(
n

k

) (
λ1

λ1 + λ2

)k (
λ2

λ1 + λ2

)n−k

=

(
n

k

)
pk (1− p)n−k , where p =

λ1

λ1 + λ2

8. Memorylessness
We say that a random variable X is memoryless if P(X > k + i | X > k) = P(X > i) for all non-negative in-
tegers k and i. The idea is that X does not remember its history. Let X ∼ Geo(p). Show that X is memoryless.

Solution:
Let’s note that if X ∼ Geo(p), then P(X > k) = P(no successes in the first k trials) = (1− p)k.

P(X > k + i | X > k) =
P(X > k | X > k + i) P(X > k + i)

P(X > k)
[Bayes Theorem]

=
P(X > k + i)

P(X > k)
[P(X > k | X > k + i) = 1]

=
(1− p)k+i

(1− p)k
[P(X > k) = (1− p)k]

= (1− p)i

= P(X > i)
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