CSE 312: Foundations of Computing II

Section 5: Variance, Independence of RVs; Zoo of discrete R.V.s

1. Review of Main Concepts

- (a) Variance: Let X be a random variable and $\mu = \mathbb{E}[X]$. The variance of X is defined to be $\text{Var}(X) = \mathbb{E}[(X \mu)^2]$. Notice that since this is an expectation of a nonnegative random variable, i.e., $(X \mu)^2$, variance is always nonnegative. With some algebra, we can simplify this to $\text{Var}(X) = \mathbb{E}[X^2] \mathbb{E}[X]^2$.
- (b) **Standard Deviation**: Let X be a random variable. We define the standard deviation of X to be the square root of the variance, and denote it $\sigma = \sqrt{Var(X)}$.
- (c) **Property of Variance**: Let $a, b \in \mathbb{R}$ and let X be a random variable. Then, $Var(aX + b) = a^2Var(X)$.
- (d) **Independence**: Random variable X and event E are independent iff

$$\forall x, \quad \mathbb{P}(X = x \cap E) = \mathbb{P}(X = x)\mathbb{P}(E)$$

(e) **Independence**: Random variables X and Y are independent iff

$$\forall x \forall y, \quad \mathbb{P}(X = x \cap Y = y) = \mathbb{P}(X = x)\mathbb{P}(Y = y)$$

In this case, we have $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$ (the converse is not necessarily true).

- (f) Independence of functions of a r.v.: If X and Y are independent and $g(\cdot), h(\cdot)$ are functions mapping real numbers to real numbers, then g(X) and h(Y) are independent. (See if you can prove this!)
- (g) i.i.d. (independent and identically distributed): Random variables X_1, \ldots, X_n are i.i.d. (or iid) iff they are independent and have the same probability mass function.
- (h) Variance of Independent Variables: If X is independent of Y, Var(X+Y) = Var(X) + Var(Y). This depends on independence, whereas linearity of expectation always holds. Note that this combined with the above shows that $\forall a,b,c \in \mathbb{R}$ and if X is independent of Y, $Var(aX+bY+c)=a^2Var(X)+b^2Var(Y)$.

2. Review: Zoo of Discrete Random Variables

(a) **Uniform**: $X \sim \mathsf{Uniform}(a,b)$ ($\mathsf{Unif}(a,b)$ for short), for integers $a \leq b$, iff X has the following probability mass function:

$$p_X(k) = \frac{1}{b-a+1}, \quad k = a, a+1, \dots, b$$

 $\mathbb{E}[X] = \frac{a+b}{2}$ and $Var(X) = \frac{(b-a)(b-a+2)}{12}$. This represents each integer from [a,b] to be equally likely. For example, a single roll of a fair die is Uniform(1,6).

(b) **Bernoulli** (or indicator): $X \sim \text{Bernoulli}(p)$ (Ber(p) for short) iff X has the following probability mass function:

$$p_X(k) = \begin{cases} p, & k = 1\\ 1 - p, & k = 0 \end{cases}$$

 $\mathbb{E}[X] = p \text{ and } Var(X) = p(1-p). \text{ An example of a Bernoulli r.v. is one flip of a coin with } \mathbb{P}\left(\text{head}\right) = p.$

(c) **Binomial**: $X \sim \text{Binomial}(n, p)$ (Bin(n, p) for short) iff X is the sum of n iid Bernoulli(p) random variables. X has probability mass function

$$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad k = 0, 1, \dots, n$$

 $\mathbb{E}[X] = np \text{ and } Var(X) = np(1-p). \text{ An example of a Binomial r.v. is the number of heads in } n \text{ independent flips of a coin with } \mathbb{P}\left(\text{head}\right) = p. \text{ Note that } \text{Bin}(1,p) \equiv \text{Ber}(p). \text{ As } n \to \infty \text{ and } p \to 0, \text{with } np = \lambda, \text{ then } \text{Bin}\left(n,p\right) \to \text{Poi}(\lambda). \text{ If } X_1,\ldots,X_n \text{ are independent Binomial r.v.'s, where } X_i \sim \text{Bin}(N_i,p), \text{ then } X = X_1 + \ldots + X_n \sim \text{Bin}(N_1 + \ldots + N_n,p).$

1

(d) **Geometric:** $X \sim \text{Geometric}(p)$ (Geo(p) for short) iff X has the following probability mass function:

$$p_X(k) = (1-p)^{k-1} p, \quad k = 1, 2, \dots$$

 $\mathbb{E}[X] = \frac{1}{p}$ and $Var(X) = \frac{1-p}{p^2}$. An example of a Geometric r.v. is the number of independent coin flips up to and including the first head, where $\mathbb{P}(\text{head}) = p$.

(e) **Poisson**: $X \sim \mathsf{Poisson}(\lambda)$ ($\mathsf{Poi}(\lambda)$ for short) iff X has the following probability mass function:

$$p_X(k) = e^{-\lambda} \frac{\lambda^k}{k!}, \quad k = 0, 1, \dots$$

 $\mathbb{E}[X] = \lambda$ and $Var(X) = \lambda$. An example of a Poisson r.v. is the number of people born during a particular minute, where λ is the average birth rate per minute. If X_1, \ldots, X_n are independent Poisson r.v.'s, where $X_i \sim \mathsf{Poi}(\lambda_i)$, then $X = X_1 + \ldots + X_n \sim \mathsf{Poi}(\lambda_1 + \ldots + \lambda_n)$.

(f) **Negative Binomial** : $X \sim \mathsf{NegativeBinonial}(r,p)$ (NegBin(r,p) for short) iff X is the sum of r iid Geometric(p) random variables. X has probability mass function

$$p_X(k) = {k-1 \choose r-1} p^r (1-p)^{k-r}, \quad k = r, r+1, \dots$$

 $\mathbb{E}[X] = \frac{r}{p} \text{ and } Var(X) = \frac{r(1-p)}{p^2}. \text{ An example of a Negative Binomial r.v. is the number of independent coin flips up to and including the } r^{\text{th}} \text{ head, where } \mathbb{P}\left(\text{head}\right) = p. \text{ If } X_1, \dots, X_n \text{ are independent Negative Binomial r.v.'s, where } X_i \sim \mathsf{NegBin}(r_i, p), \text{ then } X = X_1 + \dots + X_n \sim \mathsf{NegBin}(r_1 + \dots + r_n, p).$

(g) **Hypergeometric** : $X \sim \mathsf{HyperGeometric}(N,K,n)$ ($\mathsf{HypGeo}(N,K,n)$ for short) iff X has the following probability mass function:

$$p_X(k) = \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}}, \quad k = \max\{0, n+K-N\}, \dots, \min\{K, n\}$$

 $\mathbb{E}[X] = n \frac{K}{N}$. This represents the number of successes drawn, when n items are drawn from a bag with N items (K of which are successes, and N-K failures) without replacement. If we did this with replacement, then this scenario would be represented as $\mathrm{Bin}\,(n,\frac{K}{N})$.

3. Pond Fishing

Suppose I am fishing in a pond with B blue fish, R red fish, and G green fish, where B+R+G=N. For each of the following scenarios, identify the most appropriate distribution (with parameter(s)):

- (a) how many of the next 10 fish I catch are blue, if I catch and release
- (b) how many fish I had to catch until my first green fish, if I catch and release
- (c) how many red fish I catch in the next five minutes, if I catch on average r red fish per minute
- (d) whether or not my next fish is blue
- (e) how many of the next 10 fish I catch are blue, if I do not release the fish back to the pond after each catch
- (f) how many fish I have to catch until I catch three red fish, if I catch and release

4. Best Coach Ever!!

You are a hardworking boxer. Your coach tells you that the probability of your winning a boxing match is 0.2 independently of every other match.

- (a) How many matches do you expect to fight until you win 10 times and what kind of random variable is this?
- (b) You only get to play 12 matches every year. To win a spot in the Annual Boxing Championship, a boxer needs to win at least 10 matches in a year. What is the probability that you will go to the Championship this year and what kind of random variable is the number of matches you win out of the 12?
- (c) Let p be your answer to part (b). How many times can you expect to go to the Championship in your 20 year career?

5. Variance of a Product

Let X,Y,Z be independent random variables with means μ_X,μ_Y,μ_Z and variances $\sigma_X^2,\sigma_Y^2,\sigma_Z^2$, respectively. Find Var(XY-Z).

6. True or False?

Identify the following statements as true or false (true means always true). Justify your answer.

- (a) For any random variable X, we have $\mathbb{E}\big[X^2\big] \geq \mathbb{E}[X]^2$.
- (b) Let X, Y be random variables. Then, X and Y are independent if and only if $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$.
- (c) Let $X \sim \mathsf{Binomial}(n,p)$ and $Y \sim \mathsf{Binomial}(m,p)$ be independent. Then, $X + Y \sim \mathsf{Binomial}(n+m,p)$.
- (d) Let $X_1,...,X_{n+1}$ be independent $\mathsf{Bernoulli}(p)$ random variables. Then, $\mathbb{E}[\sum_{i=1}^n X_i X_{i+1}] = np^2$.
- (e) Let $X_1,...,X_{n+1}$ be independent $\mathsf{Bernoulli}(p)$ random variables. Then, $Y=\sum_{i=1}^n X_i X_{i+1} \sim \mathsf{Binomial}(n,p^2)$.
- (f) If $X \sim \text{Bernoulli}(p)$, then $nX \sim \text{Binomial}(n, p)$.
- (g) If $X \sim \mathsf{Binomial}(n,p)$, then $\frac{X}{n} \sim \mathsf{Bernoulli}(p)$.
- (h) For any two independent random variables X, Y, we have Var(X Y) = Var(X) Var(Y).

7. Fun with Poissons

Let $X \sim Poisson(\lambda_1)$ and $Y \sim Poisson(\lambda_2)$, and X and Y are independent.

- (a) [This was done in class.] Show that $X + Y \sim Poisson(\lambda_1 + \lambda_2)$
- (b) Show that $P(X=k \mid X+Y=n) = P(W=k)$ where $W \sim Bin(n, \frac{\lambda_1}{\lambda_1 + \lambda_2})$

8. Memorylessness

We say that a random variable X is memoryless if $\mathbb{P}(X \ge k + i \mid X \ge k) = \mathbb{P}(X \ge i)$ for all non-negative integers k and i. The idea is that X does not *remember* its history. Let $X \sim Geo(p)$. Show that X is memoryless.