
CSE 312: Foundations of Computing II
Section 4: Random Variables, Linearity of Expectation Solutions

1. Review of Main Concepts
(a) Random Variable (rv): A numeric function X : Ω → R of the outcome.

(b) Range/Support: The support/range of a random variable X, denoted ΩX , is the set of all possible
values that X can take on.

(c) Discrete Random Variable (drv): A random variable taking on a countable (either finite or countably
infinite) number of possible values.

(d) Probability Mass Function (pmf) for a discrete random variable X: a function pX : ΩX → [0, 1]
with pX (x) = P(X = x) that maps possible values of a discrete random variable to the probability of
that value happening, such that

∑
x pX(x) = 1.

(e) Cumulative Distribution Function (CDF) for a random variable X: a function FX : R → R with
FX (x) = P(X ≤ x)

(f) Expectation (expected value, mean, or average): The expectation of a discrete random variable is
defined to be E[X] =

∑
x xpX(x) =

∑
x xP(X = x). The expectation of a function of a discrete random

variable g(X) is E[g(X)] =
∑

x g(x)pX(x).

(g) Linearity of Expectation: Let X and Y be random variables, and a, b, c∈ R. Then, E[aX + bY + c] =
aE[X] + bE[Y ] + c. Also, for any random variables X1, . . . , Xn,

E[X1 +X2 + . . .+Xn] = E[X1] + E[X2] + + . . .+ E[Xn] .

(h) Variance: Let X be a random variable and µ = E[X]. The variance of X is defined to be V ar(X) =
E
[
(X − µ)2

]
. Notice that since this is an expectation of a non-negative random variable ((X − µ)2),

variance is always non-negative. With some algebra, we can simplify this to V ar(X) = E
[
X2
]
− E[X]2.

(i) Standard Deviation: Let X be a random variable. We define the standard deviation of X to be the
square root of the variance, and denote it σ =

√
V ar(X).

(j) Property of Variance: Let a, b ∈ R and let X be a random variable. Then, V ar(aX + b) = a2V ar(X).

(k) Independence: Random variables X and Y are independent iff

∀x∀y, P(X = x ∩ Y = y) = P(X = x)P(Y = y)

In this case, we have E[XY ] = E[X]E[Y ] (the converse is not necessarily true).

(l) i.i.d. (independent and identically distributed): Random variables X1, . . . , Xn are i.i.d. (or iid) iff
they are independent and have the same probability mass function.

(m) Variance of Independent Variables: If X is independent of Y , Var (X + Y ) = Var (X)+Var(Y ). This
depends on independence, whereas linearity of expectation always holds. Note that this combined with the
above shows that ∀a, b, c ∈ R and if X is independent of Y , V ar(aX+bY +c) = a2V ar(X)+b2V ar(Y ).
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2. 3-sided Die
Let the random variable X be the sum of two independent rolls of a fair 3-sided die. (If you are having trouble
imagining what that looks like, you can use a 6-sided die and change the numbers on 3 of its faces.)

(a) What is the probability mass function of X?

Solution:
First let us define the range of X. A three sided-die can take on values 1, 2, 3. Since X is the sum of two
rolls, the range of X is ΩX = {2, 3, 4, 5, 6}.

We can then define the pmf of X. To that end, we must define two random variables R1, R2 with
R1 being the roll of the first die, and R2 being the roll of the second die. Then, X = R1 + R2. Note
that ΩR1 = ΩR2 = {1, 2, 3}. With that in mind we can find the pmf of X:

pX(k) = P(X = k) =
∑

i∈ΩR1

P(R1 = i, R2 = k − i)

=
∑

i∈ΩR1

P(R1 = i) · P(R2 = k − i) (By independence of the rolls)

=
∑

i∈ΩR1

1

3
· pR2(k − i)

=
1

3
(pR2(k − 1) + pR2(k − 2) + pR2(k − 3))

At this point, we can evaluate the pmf of X for each value in the range of X, noting that pR2(k− i) = 0
if k − i 6∈ ΩR2, 1/3 otherwise. We get:

pX(k) =



1/9 k = 2

2/9 k = 3

3/9 k = 4

2/9 k = 5

1/9 k = 6

One could also list out the possible values of the first two rolls and use a table to find the marginal pmf
of X by summing up the entries of each row for each k ∈ ΩX .

(b) Find E[X] directly from the definition of expectation.

Solution:

E[X] =
6∑

k=2

kpX(k) = 2 · 1
9
+ 3 · 2

9
+ 4 · 3

9
+ 5 · 2

9
+ 6 · 1

9
= 4

(c) Find E[X] again, but this time using linearity of expectation.

Solution:
Let R1 be the roll of the first die, and R2 the roll of the second. Then, X = R1 +R2.
By linearity of expectation, we get:

E[X] = E[R1 +R2] = E[R1] + E[R2]
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We compute:
E[R1] =

∑
i∈ΩR1

i · P(R1 = i) =
∑

i∈ΩR1

i · 1
3
=

1

3
(1 + 2 + 3) = 2

Similarly, E[R2] = 2, since the rolls are independent.

Plugging into our expression for the expectation of X gives us:

E[X] = 2 + 2 = 4

(d) What is V ar(X)? (Use LOTUS to compute E
[
X2
]
.)

Solution:
We know from the definition of variance that

V ar(X) = E
[
X2
]
− E[X]2

We can use LOTUS to compute the E
[
X2
]

term as follows:

E
[
X2
]
=

6∑
x=2

x2pX(x) =
22 · 1 + 32 · 2 + 42 · 3 + 52 · 2 + 62 · 1

9
=

52

3

Plugging this into our variance equation gives us

V ar(X) = E
[
X2
]
− E[X]2 =

52

3
− 42 =

4

3

3. Kit Kats Again
Suppose we have N candies in a jar, K of which are kit kats. Suppose we draw (without replacement) until we
have (exactly) k kit kats, k ≤ K ≤ N . Let X be the number of draws until the kth kit kat. What is ΩX , the
range of X? What is pX (n) = P(X = n)?
Solution:

ΩX = {k, k + 1, . . . N −K + k}

To find pX(n), we can consider this in two separate stages, the first n−1 draws and the nth draw for the kth kit
kat. We can model the first n−1 draws using a hypergeometric random variable, say Y ∼ HypGeo(N,K, n−1).
Since we want to draw k − 1 kit kats in the first n− 1 draws, we then have

pY (k − 1) =

(
K

k − 1

)(
N −K

(n− 1)− (k − 1)

)
(

N

n− 1

)
On the nth draw, we have N − (n− 1) candies left where K − (k − 1) of them are kit kats. So the probability
of drawing a kit kat is simply K−(k−1)

N−(n−1) . Putting all of them together, the probability of drawing the kth kit kat
on the nth draw is

pX(n) = P(X = n) =

(
K

k − 1

)(
N −K

(n− 1)− (k − 1)

)
(

N

n− 1

) · K − (k − 1)

N − (n− 1)
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4. Hungry Washing Machine
You have 10 pairs of socks (so 20 socks in total), with each pair being a different color. You put them in the
washing machine, but the washing machine eats 4 of the socks chosen at random. Every subset of 4 socks is
equally probable to be the subset that gets eaten. Let X be the number of complete pairs of socks that you
have left.

(a) What is the range of X, ΩX (the set of possible values it can take on)? What is the probability mass
function of X?

Solution:
The washing machine eats 4 socks every time. It can either eat a single sock from 4 pairs of socks, leaving
us with 6 complete pairs, or a single sock from 2 pairs and a matching pair, leaving us with 7 complete
pairs, or 2 pairs of matching socks, leaving us with 8 complete pairs.

ΩX = {6, 7, 8}

We are dealing with a sample space with equally likely outcomes. As such, we can compute use the
formula P (E) = |E|

|Ω| . We know that |Ω| =
(
20
4

)
because the washing machine picks a set of 4 socks out

of 20 possible socks.

To define the pmf of X, we consider each value in the range of X.

For k = 6, we first pick 4 out of 10 pairs of socks from which we will eat a single sock (
(
10
4

)
ways),

and for each of these 4 pairs we have two socks to pick from (
(
2
1

)4 ways). Using the product rule, we get
|X = 6| =

(
10
4

)
24.

For k = 7, we first pick 1 out of 10 pairs of socks to eat in its entirety (
(
10
1

)
ways), and then 2 out

of the 9 remaining pairs from which we will eat a single sock (
(
9
2

)
ways), and for each of these 2 pairs we

have two socks to pick from (
(
2
1

)2 ways). Using the product rule, we get |X = 7| = 10
(
9
2

)
22.

For k = 8, we pick 2 out of 10 pairs of socks to eat (
(
10
2

)
ways). We get |X = 8| =

(
10
2

)
.

pX(k) =



(10
4
)24

(20
4
)

k = 6

10(9
2
)22

(20
4
)

k = 7

(10
2
)

(20
4
)

k = 8

(b) Find E[X] from the definition of expectation.

Solution:

E[X] =
∑
k∈ΩX

k · pX(k) = 6 ·
(
10
4

)
24(

20
4

) + 7 ·
10
(
9
2

)
22(

20
4

) + 8 ·
(
10
2

)(
20
4

) =
120

19

(c) Find E[X] using linearity of expectation.
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Solution:
For i ∈ [10], let Xi be 1 if pair i survived, and 0 otherwise. Then, X =

∑10
i=1Xi. But E[Xi] = 1 ·P(Xi =

1) + 0 · P(Xi = 0) = P(Xi = 1) =
(18

4
)

(20
4
)
, where the numerator indicates the number of ways of choosing

4 out the 18 remaining socks (we spare our chosen pair i). Hence,

E[X] = E

[
10∑
i=1

Xi

]
=

10∑
i=1

E[Xi] =

10∑
i=1

(
18
4

)(
20
4

) = 10

(
18
4

)(
20
4

) =
120

19

(d) Which way was easier? Doing both (a) and (b), or just (c)?

Solution:
Part (c) is was probably much easier. In this problem, you may have found part (a) and (b) easier, because
there were only 3 possible values in the range of X. However, in general computing the probability mass
function of complicated random variables (ones with hundreds of elements in their range) can be very
difficult. Often it is much easier to use linearity of expectation and compute the probability mass function
of simpler random variables.

5. Practice
(a) Let X be a random variable with pX(k) = ck for k ∈ {1, . . . , 5} = ΩX , and 0 otherwise. Find the value

of c that makes X follow a valid probability distribution and compute its mean and variance (E[X] and
V ar(X)).

(b) Let X be any random variable with mean E[X] = µ and variance V ar(X) = σ2. Find the mean and
variance of Z =

X − µ

σ
. (When you’re done, you’ll see why we call this a “standardized” version of X!)

(c) Let X,Y be independent random variables. Find the mean and variance of X − 3Y − 5 in terms of
E[X], E[Y ], V ar(X), and V ar(Y ).

(d) Let X1, . . . , Xn be independent and identically distributed (iid) random variables each with mean µ and
variance σ2. The sample mean is X̄ = 1

n

∑n
i=1Xi. Find the mean and variance of X̄. If you use the

independence assumption anywhere, explicitly label at which step(s) it is necessary for your equalities to
be true.

Solution:
(a) For X to follow a valid probability distribution, we must have

∑
k∈ΩX

pX(k) = 1. We can solve for c so
that the equality holds. We know:∑

k∈ΩX

pX(k) =
∑
k∈ΩX

ck = c
∑
k∈ΩX

k) = c · (1 + 2 + 3 + 4 + 5) = 15c

So for the normalization of the pmf of X to hold, we must choose c = 1/15.
We can now use the definition of expectation:

E[X] = 1 · 1

15
+ 2 · 2

15
+ 3 · 3

15
+ 4 · 4

15
+ 5 · 5

15
= 55/15 ≈ 3.667

And the LOTUS to find:

E[X2] = 12 · 1

15
+ 22 · 2

15
+ 32 · 3

15
+ 42 · 4

15
+ 52 · 5

15
= 225/15 = 15

And the variance of X:

V ar(X) = E[X2]− E2[X] = 15− (55/15)2 =
153 − 552

15
=

350

225
=

14

9
≈ 1.556
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(b) We know that E[aX] = a ·E[X] for some constant a, and that E[X + b] = E[X] + b for some constant
b. As such, we can compute the expectation of the standardized version of X, knowing that E[X] = µ:

E[Z] = E

[
X − µ

σ

]
=

1

σ
(E[X − µ]) =

1

σ
(E[X]− µ) = 0

For the variance, we know that V ar(aX + b) = a2V ar(X). With that in mind, knowing that V ar(X) =
σ2, we can write:

V ar(Z) = V ar

(
X − µ

σ

)
=

1

σ2
V ar(X) = 1

(c) Using the linearity of expectation, we can write:

E[X − 3Y − 5] = E[X]− 3E[Y ]− 5

We also know that the variance of a sum of independent random variables A and B is the sum of their
variances, so that V ar(A+B) = V ar(A) + V ar(B). In our case, we have A = X, and B = −3Y . We
get:

V ar(X − 3Y − 5) = V ar(X) + V ar(−3Y ) = V ar(X) + 9V ar(Y )

(d) Using linearity of expectation,

E[X] = E

[
1

n

n∑
i=1

Xi

]
=

1

n

n∑
i=1

E[Xi] =
1

n
nµ = µ

V ar(X) = V ar

(
1

n

n∑
i=1

Xi

)
=

1

n2

n∑
i=1

V ar(Xi) =
1

n2
nσ2 =

σ2

n

In the calculation for the variance, we used the independence of the Xi’s.

6. Hat Check
At a reception, n people give their hats to a hat-check person. When they leave, the hat-check person gives
each of them a hat chosen at random from the hats that remain. What is the expected number of people who
get their own hats back? (Notice that the hats returned to two people are not independent events: if a certain
hat is returned to one person, it cannot also be returned to the other person.)
Solution:
Let X be the number of people who get their hats back. For i ∈ [n], let Xi be 1 if person i gets their hat
back, and 0 otherwise. Then, E[Xi] = P(Xi = 1) = |E|

|Ω| . The sample space is all possible distributions of hats
among the n people, and the event of interest E is the subset of the sample space where person i has their
own hat. There are n! ways to distribute the n hats among the n people. This is because the first person
might have gotten 1 out of n possible hats; for each hat the first person got, the second person could get n− 1
possible hats; and so on. The number of ways person i can get their hat back is (n− 1)!. This is because we
are essentially removing person i and hat i from the pool of people/hats, and counting the permutations of the
n− 1 remaining people.
Thus, P(Xi = 1) = (n−1)!

n! = 1
n . Since X =

∑n
i=1Xi, we have

E[X] = E

[
n∑

i=1

Xi

]
=

n∑
i=1

E[Xi] =
n∑

i=1

1

n
= n · 1

n
= 1
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7. Balls in Bins
Let X be the number of bins that remain empty when m balls are distributed into n bins randomly and
independently. For each ball, each bin has an equal probability of being chosen. (Notice that two bins being
empty are not independent events: if one bin is empty, that decreases the probability that the second bin will
also be empty. This is particularly obvious when n = 2 and m > 0.) Find E[X].
Solution:
For i ∈ [n], let Xi be 1 if bin i is empty, and 0 otherwise. Then, X =

∑n
i=1Xi. We first compute E[Xi] =

1 · P(Xi = 1) + 0 · P(Xi = 0) = P(Xi = 1) = (n−1
n )m. Indeed, we are assuming multiple balls can go in

the same bin. As such, when computing P (Xi = 1), given that bin i is empty, we remove it from the pool
of possible bins to pick from, leaving us with n − 1 bins out of a total of n bins in which we can place balls.
Since we are distributing m balls over the n bins, the event that bin i remains empty occurs with probability(
n− 1

n

)m

. Hence, by linearity of expectation:

E[X] = E

[
n∑

i=1

Xi

]
=

n∑
i=1

E[Xi] = n ·
(
n− 1

n

)m

For this section, we expect to end here (or before!). The rest of these problems can be done at home
for extra practice, or if you finish 1-5 early. Solutions will be posted.

8. Fair Game?
You flip a fair coin independently and count the number of flips until the first tail, including that tail flip in the
count. If the count is n, you receive 2n dollars. What is the expected amount you will receive? How much
would you be willing to pay at the start to play this game?
Solution:
The expected amount is ∞. Let N be the number of flips until the first tail, so pN (n) = 1

2n for n ∈ N
(independent flips of a fair coin; N is the range of N and refers to the set of natural numbers). Hence by the
LOTUS, E

[
2N
]
=
∑∞

n=1 2
n 1
2n =

∑∞
n=1 1 = ∞. In theory, you should be willing to pay any finite amount of

money to play this game, but I admit I would be nervous to pay a lot. For instance, if you pay $1000, you
will lose money unless the first 9 flips are all heads. With high probability you will lose money, and with low
probability you will win a lot of money.

9. Symmetric Difference
Suppose A and B are random, independent (possibly empty) subsets of {1, 2, . . . , n}, where each subset is
equally likely to be chosen as A or B. Consider A∆B = (A ∩BC) ∪ (B ∩ AC) = (A ∪ B) ∩ (AC ∪BC), i.e.,
the set containing elements that are in exactly one of A and B. Let X be the random variable that is the size
of A∆B. What is E[X]?
Solution:
For i = 1, 2, . . . , n, let Xi be the indicator of whether i ∈ A∆B. Then E[Xi] = P(Xi = 1) = 1

2 (every subset
of 1, 2, .., n either contains i or it does not), and X =

∑n
i=1Xi, so

E[X] = E

[
n∑

i=1

Xi

]
=

n

2

.

10. Identify that Range!
Identify the support/range ΩX of the random variable X, if X is...

(a) The sum of two rolls of a six-sided die.

7



Solution:
X takes on every integer value between the min sum 2, and the max sum 12.
ΩX = {2, 3, ..., 12}

(b) The number of lottery tickets I buy until I win it.

Solution:
X takes on all positive integer values (I may never win the lottery).
ΩX = {1, 2, ...} = N

(c) The number of heads in n flips of a coin with 0 < P(head) < 1.

Solution:
X takes on every integer value between the min number of heads 0, and the max n.
ΩX = {0, 1, ..., n}

(d) The number of heads in n flips of a coin with P(head) = 1.

Solution:
Since P(head) = 1, we are guaranteed to get n heads in n flips.
ΩX = {n}

(e) The time I wait at the bus stop for the next bus.

Solution:
Time is discrete so it will take on real values between the minimum waiting time (0, the bus is here), and
the maximum waiting time (∞, the bus never gets here).
ΩX = [0,∞)

11. Coin Flipping
Suppose we have a coin with probability p of heads. Suppose we flip this coin until we flip a head for the first
time. Let X be the number of times we flip the coin up to and including the first head. What is P(X = k), for
k = 1, 2, . . .? Verify that

∑∞
k=1 P(X = k) = 1, as it should. (You may use the fact that

∑∞
j=0 a

j = 1
1−a for

|a| < 1).
Solution:

P(X = k) = (1− p)k−1p

If the kth flip is our first head, the first k− 1 must be tails (each with probability (1− p), and the kth flip must
be a head with probability p.

∞∑
k=1

P(X = k) =
∞∑
k=1

(1− p)k−1p = p
∞∑
j=0

(1− p)j =
p

1− (1− p)
= 1

(We set j = k − 1 so our summation’s lower bound k = 1 turned into j = 0).
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12. More Coin Flipping ...
Suppose we have a coin with probability p of heads. Suppose we flip this coin n times independently. Let X be
the number of heads that we observe. What is P(X = k), for k = 0, . . . n? Verify that

∑n
k=0 P(X = k) = 1,

as it should.
Solution:

P(X = k) =

(
n

k

)
pk(1− p)n−k

For a given sequence with exactly k heads, the probability of that sequence is pk(1− p)n−k. However, there are(
n
k

)
such sequences, so the probability of exactly k heads is

(
n
k

)
pk(1− p)n−k.

n∑
k=0

P(X = k) =

n∑
k=0

(
n

k

)
pk(1− p)n−k = (p+ (1− p))n = 1

The middle equality uses the Binomial Theorem.
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