CONDITIONAL PROBABILITY LTP & INDEPENDENCE

SLIDES MOSTLY BY ALEX TSUN

AGENDA

- CONDITIONAL PROBABILITY
- BAYES THEOREM
- LAW OF TOTAL PROBABILITY (LTP)
- BAYES THEOREM + LTP

DEFINITIONS

Sample Space: The set Ω of all possible outcomes of an experiment.

- Single coin flip: $\Omega = \{H, T\}$
- Two coin flips: $\Omega = \{HH, HT, TH, TT\}$
- Roll of a die: $\Omega = \{1,2,3,4,5,6\}$

Event: Any subset $E \subseteq \Omega$.

- Getting at least one head in two coin flips: $E = \{HH, HT, TH\}$
- Rolling an even number: $E = \{2,4,6\}$

(*I*, Pr(·)) Pr(E) -> [0,]] uniform prob we S Pr (w) space:

AXIOMS OF PROBABILITY & THEIR CONSEQUENCES

Let Ω denote the sample space and $E, F \subseteq \Omega$ be events.

Axiom 1 (Nonnegativity): $P(E) \ge 0$. Axiom 2 (Normalization): $P(\Omega) = 1$. Axiom 3 (Countable Additivity) If E and F are mutually exclusive, then $P(E \cup F) = P(E) + P(F)$.

Corollary 1 (Complementation): $P(E^{C}) = 1 - P(E)$. Corollary 2 (Monotonicity): If $E \subseteq F$, $P(E) \leq P(F)$. Corollary 3 (Inclusion-Exclusion): $P(E \cup F) = P(E) + P(F) - P(E \cap F)$.

CONDITIONAL PROBABILITY

<u>Conditional Probability</u>: The (conditional) probability of A given an event B happened is $P(A|B) = \frac{P(A \cap B)}{P(B)}$

 $Pr(B) \neq 0$

An equivalent and useful formula is $P(A \cap B) = P(A|B)P(B)$

CONDITIONAL PROBABILITY (REVERSAL)

Does P(A|B) = P(B|A)?

CONDITIONAL PROBABILITY (INTUITION)

Does P(A|B) = P(B|A)? No!!

Let A be the event you are wet. Let B be the event you are swimming.

P(A|B)=1

 $P(B|A) \neq 1$

FUN WITH CONDITIONAL PROBABILITY

• Toss a red die and a blue die. All outcomes equally likely. What is Pr(B | A)? What is Pr(B)?

FUN WITH CONDITIONAL PROBABILITY

 Toss a red die and a blue die. All outcomes equally likely. What is Pr(B | A)?

 $\Omega: \text{ Uniform}$

N= {H,T} all sequences of H/T of 51 GAMBLER'S FALLACY Flip a fair coin 51 times. All outcomes equally likely. A = "first 50 flips are heads" y tails • B = "the 51st flip is heads" Prluj-751 • Pr(B | A) = ? $\frac{\Pr(BnA)}{\Pr(A)} = \frac{\frac{1}{2}}{\frac{2}{51}}$

40

BAYES THEOREM

Bayes Theorem: Let A, B be events with nonzero probability. Then,

 $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$

Allows us to "reverse" the conditioning!

P(A) is called the <u>prior</u> (our belief without knowing anything), and P(A|B) is called the <u>posterior</u> (our belief after learning B).

$$P(AB)P(B) = P(AB) = P(BA)P(A)$$

$$P(AB) = \frac{P(BA)P(A)}{P(B)}$$

BAYES THEOREM (PROOF)

BAYES THEOREM (PROOF) By definition of conditional probability,

 $P(A \cap B) = P(A|B)P(B)$

Swapping A, B gives

 $P(B \cap A) = P(B|A)P(A)$

But $P(A \cap B) = P(B \cap A)$, so

P(A|B)P(B) = P(B|A)P(A)

Dividing both sides by P(B) gives

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

BAYES THEOREM

Bayes Theorem: Let A, B be events with nonzero probability. Then,

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Allows us to "reverse" the conditioning!

P(A) is called the <u>prior</u> (our belief without knowing anything), and P(A|B) is called the <u>posterior</u> (our belief after learning *B*).

RANDOM PICTURE

CUTTING UP A SAMPLE SPACE

Ω			

CUTTING UP A SAMPLE SPACETHESE EVENTS PARTITION THE SAMPLE SPACE I.E.,1. THEY "COVER" THE WHOLE SPACE.2. THEY DON'T OVERLAP.

PARTITIONS

<u>**Partition:**</u> Non-empty events E_1, \ldots, E_n partition the sample space Ω if

- (Exhaustive) $E_1 \cup E_2 \cup ... \cup E_n = \bigcup_{i=1}^n E_i = \Omega$.
- (<u>Pairwise Mutually Exclusive</u>) For all $i \neq j$, $E_i \cap E_j = \emptyset$.

Notice for any event E: E and E^{C} always partition Ω .

(THE PICTURE) LAW OF TOTAL PROBABILITY BACK TO THE OLD PICTURE. HOW CAN WE DECOMPOSE EVENT \mathbf{F} ? $P(F) = P(E_1 \cap F) + P(E_2 \cap F) + P(E_3 \cap F) + P(E_4 \cap F)$ E_4 E_1 E_2 E_3 52

(THE PICTURE) LAW OF TOTAL PROBABILITY BACK TO THE OLD PICTURE. HOW CAN WE DECOMPOSE EVENT **F**? $P(F) = P(F \cap E_1) + P(F \cap E_2) + P(F \cap E_3)$

(THE PICTURE) LAW OF TOTAL PROBABILITY $(F) = P(F \cap E_1) + P(F \cap E_2) + P(F \cap E_3) + P(F \cap E_4)$

LAW OF TOTAL PROBABILITY (LTP)

Law of Total Probability: If events $E_1, ..., E_n$ partition Ω , then for any event F,

$$P(F) = P(F \cap E_1) + \dots + P(F \cap E_n) = \sum_{i=1}^{n} P(F \cap E_i)$$

Using the definition of conditional probability $(P(F \cap E_i) = P(F|E_i)P(E_i))$, we get an alternate (more useful) form

$$P(F) = P(F|E_1)P(E_1) + \dots + P(F|E_n)P(E_n) = \sum_{i=1}^n P(F|E_i)P(E_i)$$

INTUITION (LTP) n $P(F) = P(F|E_1)P(E_1) + \dots + P(F|E_n)P(E_n) = \sum P(F|E_i)P(E_i)$ Moderna FAL Fm investment fails) to powert) Pr(٢Y

INTUITION (LTP)

 $P(F) = P(F|E_1)P(E_1) + \dots + P(F|E_n)P(E_n) = \sum_{i=1}^{n} P(F|E_i)P(E_i)$

- YOU WANT TO KNOW THE PROBABILITY COMPANY YOU INVESTED IN FAILS TO PRODUCE A SUCCESSFUL VACCINE
- You chose randomly which company to invest in First, compute the probability of failure for each of 3 companies Then, weight those by the probability of investing in that COMPANY

EXAMPLE (LTP)

$$P(F) = P(F|E_1)P(E_1) + \dots + P(F|E_n)P(E_n) = \sum_{i=1}^{n} P(F|E_i)P(E_i)$$

	AstraZeneca (E ₁)	Merck (E_2)	Moderna (E ₃)
Probability invest in this company	6/8	1/8	1/8
Probability this company's vaccine fails to work	1	0	1/2

n

 $Pr(F) = Pr(F|E_i)Pr(E_i) + Pr(F|E_i)Pr(E_i) + Pr(F|E_i)PE_i$ $1 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + \frac{1}{3} \cdot \frac{1}{3}$

EXAMPLE (LTP)

$$P(F) = P(F|E_1)P(E_1) + \dots + P(F|E_n)P(E_n) = \sum_{i=1}^n P(F|E_i)P(E_i)$$

Probability invest in this company6/81/81/8Probability this company's vaccine fails to work101/2		AstraZeneca (E_1)	Merck (E_2)	Moderna (E ₃)
Probability this 1 0 1/2 company's vaccine fails to work	Probability invest in this company	6/8	1/8	1/8
	Probability this company's vaccine fails to work	1	0	1/2

$$P(F) = P(F|E_1)P(E_1) + P(F|E_2)P(E_2) + P(F|E_3)P(E_3) = 1 \cdot \frac{6}{8} + 0 \cdot \frac{1}{8} + \frac{1}{2} \cdot \frac{1}{8} = \frac{13}{16}$$

EXAMPLE (LTP)

 $P(F) = P(F|E_1)P(E_1) + \dots + P(F|E_n)P(E_n) = \sum_{i=1}^{n} P(F|E_i)P(E_i)$

	AstraZeneca (E_1)	Merck (E_2)	Moderna (E_3)
Probability invest in this company	6/8	1/8	1/8
Probability this company's vaccine fails to work	1	0	1/2

WHAT IS THE PROBABILITY INVESTED IN MODERNA GIVEN INVESTMENT DID NOT PAY OFF (VACCINE OF COMPANY YOU INVESTED IN FAILS TO WORK)?

Pr(Es IF)

WHAT'S THE PROBABILITY THAT YOU INVESTED IN MODERNA, GIVEN THAT THE COMPANY YOU INVESTED IN FAILS TO PRODUCE SUCCESSFUL VACCINE? NEED LTP FOR DENOMINATOR...

$$P(F) = P(F|E_1)P(E_1) + \dots + P(F|E_n)P(E_n) = \sum_{i=1}^{n} P(F|E_i)P(E_i)$$

			Moderna (E_3)
Probability invest in this company	$P(E_3 F) = \frac{P(F E_3)P(E_3)}{P(E_3)}$	13.15	1/8
Probability this company's vaccine fails to work	=)	13	1/2

n

0 0

 $P(F) = P(F|E_1)P(E_1) + P(F|E_2)P(E_2) + P(F|E_3)P(E_3) = 1 \cdot \frac{6}{8} + 0 \cdot \frac{1}{8} + \frac{1}{2} \cdot \frac{1}{8} = \frac{13}{16}$

EXAMPLE (LTP) $P(F) = P(F|E_1)P(E_1) + \dots + P(F|E_n)P(E_n) = \sum P(F|E_i)P(E_i)$ (E_3) Moderna 1/8 $P(E_3|F) = \frac{P(F|E_3)P(E_3)}{P(F)} = \frac{\frac{1}{2} \cdot \frac{1}{8}}{\frac{13}{15}} = \frac{1}{13}$ **Probability invest** in this company 1/2**Probability this** company's vaccine fails to work

 $P(F) = P(F|E_1)P(E_1) + P(F|E_2)P(E_2) + P(F|E_3)P(E_3) = 1 \cdot \frac{6}{8} + 0 \cdot \frac{1}{8} + \frac{1}{2} \cdot \frac{1}{8} = \frac{13}{16}$

BAYES THEOREM WITH LAW OF TOTAL PROBABILITY

Bayes Theorem with LTP: Let $E_1, ..., E_n$ be a partition of the sample space, and F an event. Then,

$$P(E_1|F) = \frac{P(F|E_1)P(E_1)}{P(F)} = \frac{P(F|E_1)P(E_1)}{\sum_{i=1}^{n} P(F|E_i)P(E_i)}$$

(Simple Partition) In particular, if E is an event with nonzero probability, then

$$P(E|F) = \frac{P(F|E)P(E)}{P(F)} = \frac{P(F|E)P(E)}{\frac{P(F|E)P(E) + P(F|E^{c})P(E^{c})}{P(F|E)P(E) + P(F|E^{c})P(E^{c})}}$$

1% of people have a certain genetic disorder. Pr(G) = 0.0190% of time people with disorder test positives) ANOTHER EXAMPLE • 9.6% of the time, people that don't have the disorder test not (false positives). Pr (text pos 6) = 0.096 • If a person gets a positive test result, what is the probability that they actually have the disorder? G: have the disorder r (G-)test pos) O.9 Pr(test pos | G-) testpos Re positive test result

 $P(\text{test pos}) = Pr(\text{test pos})G)P(G) + P(\text{test pos})\overline{G})P(\overline{G})$ 0.9 0.01 0.096 0.99

ANOTHER EXAMPLE

1% of people have a certain genetic disorder.

PriA18) + PriA18)

- 90% of time people with disorder test positive (true positives)
 9.6% of the time, people that don't have the disorder test negative (false positives).
 - If a person gets a positive test result, what is the probability that they actually have the disorder?

G: have the disorder

P: positive test result

Pr(test pos)G = 0.9Pr(testrag |G) = 0.1 = 1 - Pr(test-pos/G)

PriAnB

PROBABILITY 2.3 INDEPENDENCE

MOST SLIDES BY ALEX TSUN

AGENDA

- CHAIN RULE
- INDEPENDENCE
- CONDITIONAL INDEPENDENCE

HAVE A STANDARD 52-CARD DECK.

- 4 SUITS (CLUBS, DIAMONDS, HEARTS, SPADES)
- 13 RANKS (A, 2, 3, ..., 9, 10, J, Q, K)

A *	÷		2	*		3 4	*		4 *	*	5 .	÷	6 .	* *	7.3. 4	÷.,	÷.	÷	9 **	÷ •	¹⁰ ***		K North
L		¥		۴	Ż		Ť	ŝ	÷	* ;	÷	÷,	*	÷,	*	*2	*	•8	•	•6	÷ +	N - 6	
A ♠	¢		2 •	٠		3 ¢	♠ ♠		4♠	۰	5 . ♠	ب	6. ♦	♠ ♠			*.▲			*			K CARA
L		Ŷ		۴	ŝ		۴	ŝ	Ý	Ψţ	۴	¢₿	•	\$	۴	٠÷	•	*	•	♦	ψ ^Ψ Ψ(07+8	
¢	¥		2	۲		3 ¥	•		‡ ♥	٠	5 ₩	•	€ • •	•	∛ ∙	*	8. •			ž		•	
L		Ŷ	L	٠	ĉ		٠	ŝ	٨	•;	•	^		\$		•		Å	•	≜ 6	• * •(<u>`XI^</u> ;	
÷	•	÷	2 •	•	ŧ	3 ↓	• • •	• 54	* ◆	• •;	5 • •	•	€ • •	♦ ♦ ♦ §	₹• •		8 • •			•			

HAVE A STANDARD 52-CARD DECK. SHUFFLE IT, AND DRAW THE TOP 3 CARDS.

A: ACE OF SPADES FIRST) = P(A, B, C)? B: 10 OF CLUBS SECOND C: 4 OF DIAMONDS THIRD

HAVE A STANDARD 52-CARD DECK. SHUFFLE IT, AND DRAW THE TOP 3 CARDS.

A: ACE OF SPADES FIRST) = P(A, B, C)? B: 10 OF CLUBS SECOND C: 4 OF DIAMONDS THIRD

HAVE A STANDARD 52-CARD DECK. SHUFFLE IT, AND DRAW THE TOP 3 CARDS. (UNIFORM PROBABILITY SPACE). A: ACE OF S

WHAT IS P

A: ACE OF SPADES FIRST B: 10 OF CLUBS SECOND C: 4 OF DIAMONDS THIRD

CHAIN RULE

<u>Chain Rule</u>: Let $A_1, ..., A_n$ be events with nonzero probability. Then,

 $P(A_1, \dots, A_n) = P(A_1)P(A_2|A_1)P(A_3|A_1, A_2) \dots P(A_n|A_1, \dots, A_{n-1})$ In the case of two events A, B,

$$P(A,B) = P(A)P(B|A)$$

An easy way to remember this formula: we need to do n tasks, so we can perform them one at a time, conditioning on what we've done so far.

$$\left[\Pr(A \cap B \cap c)^{?} = \Pr(A) \Pr(B)A\right] \Pr(C \cap A \cap B)$$

= $\Pr(A) \Pr(B \cap A) \Pr(C \cap A \cap B)$
= $\Pr(A) \Pr(B \cap A)$

HAVE A STANDARD 52-CARD DECK. SHUFFLE IT, AND DRAW THE TOP 3 CARDS. (UNIFORM PROBABILITY SPACE). A: ACE OF SF

WHAT IS P

A: ACE OF SPADES FIRST
B: 10 OF CLUBS SECOND
C: 4 OF DIAMONDS THIRD

13

FUN WITH CARDS

- Two people, A and B, are playing the following game.
- A 6-sided die is thrown and each time it's thrown, regardless of the history, it is equally likely to show any of the six numbers
- If it shows 5, A wins.
- If it shows 1, 2 or 6, B wins.
- Otherwise, they play a second round and so on.
- What is Pr(A wins on 4th round)?

FUN WITH CARDS

Two people, A and B, are playing the following game. A 6-sided die is thrown and each time it's thrown, regardless of the history, it is equally likely to show any of the six numbers If it shows 5, A wins. If it shows 1, 2 or 6, B wins. Otherwise, they play a second round and so on.

What is Pr(A wins on 4th round)?

THE NEED FOR INDEPENDENCE

Quick question: In general, is

P(A,B) = P(A)P(B)?

THE NEED FOR INDEPENDENCE

Quick question: In general, is

P(A,B) = P(A)P(B)?

The chain rule says

P(A,B) = P(A)P(B|A)

So no, unless the special case when P(B|A) = P(B). This case is so important it has a name.

INDEPENDENCE

Independence: Events A, B are independent if any of the three equivalent conditions hold:

1. P(A|B) = P(A)2. P(B|A) = P(B)3. P(A,B) = P(A)P(B)

INDEPENDENCE

• Toss a coin 3 times. Each of 8 outcomes equally likely. Define

- A = {at most one T} = {HHH, HHT, HTH, THH}
- B = {at most 2 Heads}= {HHH}^c
- Are A and B independent?

USING INDEPENDENCE TO DEFINE A PROBABILISTIC MODEL

- We can **define** our probability model via independence.
- Example: suppose a biased coin comes up heads with probability 2/3, independent of other flips.
- Sample space: sequences of 3 coin tosses.
- Pr (HHH)=?
- Pr (TTT) = ?
- Pr (HHT) = ?
- Pr (2 heads) = ?