CSE 312
Winter 2017

EM: The Expectation-Maximization Algorithm (for a Two-Component Gaussian Mixture)
Previously:
How to estimate μ given data

For this problem, we got a nice, closed form, solution, allowing calculation of the μ, σ that maximize the likelihood of the observed data.

We’re not always so lucky...
More Complex Example

This?

Or this?

(A modeling decision, not a math problem..., but if the later, what math?)
A Living Histogram

male and female genetics students, University of Connecticut in 1996

http://mindprod.com/jgloss/histogram.html
Another Real Example:
CpG content of human gene promoters

“A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters” Saxonov, Berg, and Brutlag, PNAS 2006;103:1412-1417
Gaussian Mixture Models / Model-based Clustering

Parameters θ

- means
 - μ_1
 - μ_2

- variances
 - σ_1^2
 - σ_2^2

- mixing parameters
 - τ_1
 - $\tau_2 = 1 - \tau_1$

P.D.F.

\[
\begin{align*}
\text{separately} & \quad f(x|\mu_1, \sigma_1^2) \quad f(x|\mu_2, \sigma_2^2) \\
\text{together} & \quad \tau_1 f(x|\mu_1, \sigma_1^2) + \tau_2 f(x|\mu_2, \sigma_2^2)
\end{align*}
\]

Likelihood

\[
L(x_1, x_2, \ldots, x_n|\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \tau_1, \tau_2) = \prod_{i=1}^n \sum_{j=1}^2 \tau_j f(x_i|\mu_j, \sigma_j^2)
\]

No closed-form max
Likelihood Surface

\[\mu_1 \]

\[\mu_2 \]
\[x_i = \]
\[-10.2, -10, -9.8 \]
\[-0.2, 0, 0.2 \]
\[11.8, 12, 12.2 \]

\[\mu_1 \]

\[\sigma^2 = 1.0 \]
\[\tau_1 = 0.5 \]
\[\tau_2 = \frac{5}{32} \]
A What-If Puzzle

Likelihood

\[
L(x_1, x_2, \ldots, x_n \mid \mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \tau_1, \tau_2)
\]

\[
= \prod_{i=1}^{n} \sum_{j=1}^{2} \tau_j f(x_i \mid \mu_j, \sigma_j^2)
\]

Messy: no closed form solution known for finding \(\theta \) maximizing \(L \)

But what if we knew the hidden data?

\[
z_{ij} = \begin{cases}
1 & \text{if } x_i \text{ drawn from } f_j \\
0 & \text{otherwise}
\end{cases}
\]
A Hat Trick

Two slips of paper in a hat:

Pink: $\mu = 3$, and

Blue: $\mu = 7$.

You draw one, then (without revealing color or μ) reveal a single sample $X \sim \text{Normal}(\text{mean } \mu, \sigma^2 = 1)$.

You happen to draw $X = 6.001$.

Dr. Mean says “your slip = 7.” What is $P(\text{correct})$?

What if X had been 4.9?
Let “$X \approx 6$” be a shorthand for $6.001 - \delta/2 < X < 6.001 + \delta/2$

$$P(\mu = 7|X = 6) = \lim_{\delta \to 0} P(\mu = 7|X \approx 6)$$

$$P(\mu = 7|X \approx 6) = \frac{P(X \approx 6|\mu = 7)P(\mu = 7)}{P(X \approx 6)}$$

Bayes rule

$$= \frac{0.5P(X \approx 6|\mu = 7)}{0.5P(X \approx 6|\mu = 3) + 0.5P(X \approx 6|\mu = 7)}$$

$$\approx \frac{f(X = 6|\mu = 7)\delta}{f(X = 6|\mu = 3)\delta + f(X = 6|\mu = 7)\delta}, \text{ so}$$

$$P(\mu = 7|X = 6) = \frac{f(X = 6|\mu = 7)}{f(X = 6|\mu = 3) + f(X = 6|\mu = 7)} \approx 0.982$$
A Hat Trick

Alternate View:

Posterior odds = Bayes Factor · Prior odds

\[
\frac{P(\mu = 7 | X = 6)}{P(\mu = 3 | X = 6)} = \frac{f(X = 6 | \mu = 7)}{f(X = 6 | \mu = 3)} \cdot \frac{0.50}{0.50} = \frac{0.2422}{0.0044} \cdot 1 = \frac{54.8}{1}
\]

I.e., 50:50 prior odds become 54:1 in favor of \(\mu = 7 \), given \(X = 6.001 \)

(and would become 3:2 in favor of \(\mu = 3 \), given \(X = 4.9 \))
Another Hat Trick

Two secret numbers, μ_{pink} and μ_{blue}

On pink slips, many samples of $\text{Normal}(\mu_{\text{pink}}, \sigma^2 = 1)$,
Ditto on blue slips, from $\text{Normal}(\mu_{\text{blue}}, \sigma^2 = 1)$.

Based on 16 of each, how would you “guess” the secrets (where “success” means your guess is within ±0.5 of each secret)?

Roughly how likely is it that you will succeed?
Another Hat Trick (cont.)

Pink/blue = red herrings; separate & independent

Given $X_1, \ldots, X_{16} \sim N(\mu, \sigma^2), \quad \sigma^2 = 1$

Calculate $Y = \frac{(X_1 + \ldots + X_{16})}{16} \sim N(\text{?}, \text{?})$

$E[Y] = \mu$

$\text{Var}(Y) = \frac{16\sigma^2}{16^2} = \frac{\sigma^2}{16} = \frac{1}{16}$

I.e., X_i's are all $\sim N(\mu, 1)$; $Y \sim N(\mu, 1/16)$

and since $0.5 = 2 \sqrt{1/16}$, we have:

“Y within ±.5 of μ” = “Y within ±2 σ of μ” \approx 95% prob

Note 1: Y is a point estimate for μ;

$Y \pm 2 \sigma$ is a 95% confidence interval for μ

(More on this topic later)
Histogram of 1000 samples of the average of 16 \(N(0,1) \) RVs

Red = \(N(0,1/16) \) density
Hat Trick 2 (cont.)

Note 2:

What would you do if some of the slips you pulled had coffee spilled on them, obscuring color?

If they were half way between means of the others?
If they were on opposite sides of the means of the others?
A What-If Puzzle

Likelihood

\[
L(x_1, x_2, \ldots, x_n \mid \mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \tau_1, \tau_2) = \prod_{i=1}^{n} \sum_{j=1}^{2} \tau_j f(x_i \mid \mu_j, \sigma_j^2)
\]

Messy: no closed form solution known for finding \(\theta \) maximizing \(L \)

But what if we knew the hidden data?

\[
z_{ij} = \begin{cases}
1 & \text{if } x_i \text{ drawn from } f_j \\
0 & \text{otherwise}
\end{cases}
\]
EM as Egg vs Chicken

IF parameters θ known, could estimate z_{ij}

E.g., $|x_i - \mu_1|/\sigma_1 \gg |x_i - \mu_2|/\sigma_2 \Rightarrow P[z_{i1}=1] \ll P[z_{i2}=1]

IF z_{ij} known, could estimate parameters θ

E.g., only points in cluster 2 influence μ_2, σ_2

But we know neither; (optimistically) iterate:

E-step: calculate expected z_{ij}, given parameters

M-step: calculate “MLE” of parameters, given $E(z_{ij})$

Overall, a clever “hill-climbing” strategy
Simple Version: “Classification EM”

If $E[Z_{ij}] < .5$, pretend $z_{ij} = 0$; $E[Z_{ij}] > .5$, pretend it’s 1

I.e., classify points as component 1 or 2

Now recalc θ, assuming that partition (standard MLE)

Then recalc $E[Z_{ij}]$, assuming that θ

Then re-recalc θ, assuming new $E[Z_{ij}]$, etc., etc.

“Full EM” is slightly more involved, (to account for uncertainty in classification) but this is the crux.
Full EM

\(x_i \)'s are known; \(\theta \) unknown. Goal is to find MLE \(\theta \) of:

\[
L(x_1, \ldots, x_n \mid \theta)
\]
(hidden data likelihood)

Would be easy if \(z_{ij} \)'s were known, i.e., consider:

\[
L(x_1, \ldots, x_n, z_{11}, z_{12}, \ldots, z_{n2} \mid \theta)
\]
(complete data likelihood)

But \(z_{ij} \)'s aren’t known.

Instead, maximize expected likelihood of visible data

\[
E(L(x_1, \ldots, x_n, z_{11}, z_{12}, \ldots, z_{n2} \mid \theta)),
\]

where expectation is over distribution of hidden data (\(z_{ij} \)'s)
The E-step:
Find \(E(z_{ij}) \), i.e., \(P(z_{ij}=1) \)

Assume \(\theta \) known & fixed

\(A (B) \): the event that \(x_i \) was drawn from \(f_1 \) (\(f_2 \))

\(D \): the observed datum \(x_i \)

Expected value of \(z_{i1} \) is \(P(A|D) \)

\[
E[z_{i1}] = P(A|D) = \frac{P(D|A)P(A)}{P(D)}
\]

\[
P(D) = P(D|A)P(A) + P(D|B)P(B)
= f_1(x_i|\theta_1) \tau_1 + f_2(x_i|\theta_2) \tau_2
\]

Note: denominator = sum of numerators – i.e. that which normalizes sum to 1 (typical Bayes)
Let “$X \approx 6$” be a shorthand for $6.001 - \delta/2 < X < 6.001 + \delta/2$

$$P(\mu = 7|X = 6) = \lim_{\delta \to 0} P(\mu = 7|X \approx 6)$$

$$P(\mu = 7|X \approx 6) = \frac{P(X \approx 6|\mu = 7)P(\mu = 7)}{P(X \approx 6)}$$

$$= \frac{0.5P(X \approx 6|\mu = 7)}{0.5P(X \approx 6|\mu = 3) + 0.5P(X \approx 6|\mu = 7)}$$

$$\approx \frac{f(X = 6|\mu = 7)\delta}{f(X = 6|\mu = 3)\delta + f(X = 6|\mu = 7)\delta}, \text{ so}$$

$$P(\mu = 7|X = 6) = \frac{f(X = 6|\mu = 7)}{f(X = 6|\mu = 3) + f(X = 6|\mu = 7)} \approx 0.982$$
Complete Data Likelihood

Recall:

\[z_{1j} = \begin{cases}
1 & \text{if } x_1 \text{ drawn from } f_j \\
0 & \text{otherwise}
\end{cases} \]

so, correspondingly,

\[L(x_1, z_{1j} \mid \theta) = \begin{cases}
\tau_1 f_1(x_1 \mid \theta) & \text{if } z_{11} = 1 \\
\tau_2 f_2(x_1 \mid \theta) & \text{otherwise}
\end{cases} \]

Formulas with “if’s” are messy; can we blend more smoothly? Yes, many possibilities. Idea 1:

\[L(x_1, z_{1j} \mid \theta) = z_{11} \cdot \tau_1 f_1(x_1 \mid \theta) + z_{12} \cdot \tau_2 f_2(x_1 \mid \theta) \]

Idea 2 (Better):

\[L(x_1, z_{1j} \mid \theta) = (\tau_1 f_1(x_1 \mid \theta))^{z_{11}} \cdot (\tau_2 f_2(x_1 \mid \theta))^{z_{12}} \]
M-step:

Find θ maximizing $E(\log(\text{Likelihood}))$

(For simplicity, assume $\sigma_1 = \sigma_2 = \sigma; \tau_1 = \tau_2 = \tau = 0.5$)

$$L(\vec{x}, \vec{z} \mid \theta) = \prod_{i=1}^{n} \frac{\tau}{\sqrt{2\pi}\sigma^2} \exp \left(- \sum_{j=1}^{2} z_{ij} \frac{(x_i - \mu_j)^2}{2\sigma^2} \right)$$

$$E[\log L(\vec{x}, \vec{z} \mid \theta)] = E \left[\sum_{i=1}^{n} \left(\log \tau - \frac{1}{2} \log(2\pi\sigma^2) - \sum_{j=1}^{2} z_{ij} \frac{(x_i - \mu_j)^2}{2\sigma^2} \right) \right]$$

$$= \sum_{i=1}^{n} \left(\log \tau - \frac{1}{2} \log(2\pi\sigma^2) - \sum_{j=1}^{2} E[z_{ij}] \frac{(x_i - \mu_j)^2}{2\sigma^2} \right)$$

Find θ maximizing this as before, using $E[z_{ij}]$ found in E-step. Result:

$$\mu_j = \frac{\sum_{i=1}^{n} E[z_{ij}] x_i}{\sum_{i=1}^{n} E[z_{ij}]}$$ (intuit: avg, weighted by subpop prob)
Hat Trick 2 (cont.)

Note 2: red/blue separation is just like the M-step of EM if values of the hidden variables (z_{ij}) were known.

What if they’re not? E.g., what would you do if some of the slips you pulled had coffee spilled on them, obscuring color?

If they were half way between means of the others? If they were on opposite sides of the means of the others
M-step: calculating mu’s

$$\mu_j = \frac{\sum_{i=1}^{n} E[z_{ij}] x_i}{\sum_{i=1}^{n} E[z_{ij}]}$$

In words: μ_j is the average of the observed x_i’s, weighted by the probability that x_i was sampled from component j.

<table>
<thead>
<tr>
<th></th>
<th>E[z_{i1}]</th>
<th>E[z_{i2}]</th>
<th>x_i</th>
<th>row sum</th>
<th>avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>old E’s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E[z_{i1}]</td>
<td>0.99 0.98 0.7</td>
<td>0.2 0.03 0.01</td>
<td>9 10 11 19 20 21</td>
<td>2.91</td>
<td></td>
</tr>
<tr>
<td>E[z_{i2}]</td>
<td>0.01 0.02 0.3</td>
<td>0.8 0.97 0.99</td>
<td></td>
<td>3.09</td>
<td></td>
</tr>
<tr>
<td>x$_i$</td>
<td>9 10 11 19 20 21</td>
<td>90 15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>new μ’s</th>
<th>E[z_{i1}]x_i</th>
<th>E[z_{i2}]x_i</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E[z_{i1}]x_i</td>
<td>8.9 9.8 7.7 3.8 0.6 0.2</td>
<td></td>
<td></td>
<td>31.0</td>
<td>10.66</td>
</tr>
<tr>
<td>E[z_{i2}]x_i</td>
<td>0.1 0.2 3.3 15.2 19.4 20.8</td>
<td>58.98 19.09</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2 Component Mixture

\[\sigma_1 = \sigma_2 = 1; \quad \tau = 0.5 \]

<table>
<thead>
<tr>
<th></th>
<th>mu1</th>
<th>-20.00</th>
<th>-6.00</th>
<th>-5.00</th>
<th>-4.99</th>
</tr>
</thead>
<tbody>
<tr>
<td>mu2</td>
<td></td>
<td>6.00</td>
<td>0.00</td>
<td>3.75</td>
<td>3.75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x1</th>
<th>z11</th>
<th>5.11E-12</th>
<th>1.00E+00</th>
<th>1.00E+00</th>
</tr>
</thead>
<tbody>
<tr>
<td>x2</td>
<td>z21</td>
<td>2.61E-23</td>
<td>1.00E+00</td>
<td>1.00E+00</td>
</tr>
<tr>
<td>x3</td>
<td>z31</td>
<td>1.33E-34</td>
<td>9.98E-01</td>
<td>1.00E+00</td>
</tr>
<tr>
<td>x4</td>
<td>z41</td>
<td>9.09E-80</td>
<td>1.52E-08</td>
<td>4.11E-03</td>
</tr>
<tr>
<td>x5</td>
<td>z51</td>
<td>6.19E-125</td>
<td>5.75E-19</td>
<td>2.64E-18</td>
</tr>
<tr>
<td>x6</td>
<td>z61</td>
<td>3.16E-136</td>
<td>1.43E-21</td>
<td>4.20E-22</td>
</tr>
<tr>
<td>x7</td>
<td>z71</td>
<td>1.62E-147</td>
<td>3.53E-24</td>
<td>6.69E-26</td>
</tr>
</tbody>
</table>

- Essentially converged in 2 iterations
- (Excel spreadsheet on course web)
EM Summary

Fundamentally a maximum likelihood parameter estimation problem; broader than just Gaussian

Useful if 0/1 hidden data, and if analysis would be more tractable if hidden data z were known

Iterate:

E-step: estimate $E(z)$ for each z, given θ

M-step: estimate θ maximizing $E[\log \text{likelihood}]$ given $E[z]$ [where “$E[\log L]$” is wrt random $z \sim E[z] = p(z=1)$]
EM Issues

Under mild assumptions, EM is guaranteed to increase likelihood with every E-M iteration, hence will *converge*. But it may converge to a *local*, not global, max. (Recall the 4-bump surface...)

Issue is intrinsic (probably), since EM is often applied to problems (including clustering, above) that are *NP-hard* (so fast alg is unlikely)

Nevertheless, widely used, often effective
Applications

Clustering is a remarkably successful exploratory data analysis tool

- Web-search, information retrieval, gene-expression, ...
- Model-based approach above is one of the leading ways to do it

Gaussian mixture models widely used

- With many components, empirically match arbitrary distribution
- Often well-justified, due to “hidden parameters” driving the visible data

EM is extremely widely used for “hidden-data” problems

- Hidden Markov Models – speech recognition, DNA analysis, ...
A “Machine Learning” Example
Handwritten Digit Recognition

Given: 10^4 unlabeled, scanned images of handwritten digits, say 25 x 25 pixels,

Goal: automatically classify new examples

Possible Method:

Each image is a point in \mathbb{R}^{625}; the “ideal” 7, say, is one such point; model other 7’s as a Gaussian cloud around it

Do EM, as above, but 10 components in 625 dimensions instead of 2 components in 1 dimension

“Recognize” a new digit by best fit to those 10 models, i.e., basically max E-step probability