5. independence
Defn: Two events E and F are *independent* if

\[P(E \cap F) = P(E) \cdot P(F) \]

If \(P(F) > 0 \), this is equivalent to: \(P(E|F) = P(E) \) \(\text{(proof below)} \)

Otherwise, they are called *dependent*
Roll two dice, yielding values D_1 and D_2

1) $E = \{ D_1 = 1 \}$
 $F = \{ D_2 = 1 \}$

 $P(E) = 1/6, \ P(F) = 1/6, \ P(EF) = 1/36$

 $P(EF) = P(E) \cdot P(F) \implies E \text{ and } F$ independent

 Intuitive; the two dice are not physically coupled

2) $G = \{ D_1 + D_2 = 5 \} = \{(1,4),(2,3),(3,2),(4,1)\}$

 $P(E) = 1/6, \ P(G) = 4/36 = 1/9, \ P(EG) = 1/36$

 not independent!

 E, G are dependent events

 The dice are still not physically coupled, but “$D_1 + D_2 = 5$” couples them mathematically: info about D_1 constrains D_2. (i.e., dependence/independence not always intuitively obvious; “use the definition, Luke.”)
Theorem: E, F independent \Rightarrow E, F^c independent

Proof: $P(EF^c) = P(E) - P(EF)$
 = $P(E) - P(E)P(F)$
 = $P(E)(1-P(F))$
 = $P(E)P(F^c)$

Theorem: if $P(E)>0$, $P(F)>0$, then
E, F independent $\iff P(E|F)=P(E) \iff P(F|E) = P(F)$

Proof: Note $P(EF) = P(E|F)P(F)$, regardless of in/dep.
Assume independent. Then

$P(E)P(F) = P(EF) = P(E|F)P(F) \Rightarrow P(E|F)=P(E)$ (\div by $P(F)$)

Conversely, $P(E|F)=P(E) \Rightarrow P(E)P(F) = P(EF)$ (\times by $P(F)$)
Two events E and F are independent if
\[P(EF) = P(E) P(F) \]
If \(P(F) > 0 \), this is equivalent to: \(P(E|F) = P(E) \)
Otherwise, they are called dependent

Three events E, F, G are independent if
\[
\begin{align*}
P(EF) &= P(E) P(F) \\ P(EG) &= P(E) P(G) \quad \text{and} \quad P(EFG) = P(E) P(F) P(G) \\ P(FG) &= P(F) P(G)
\end{align*}
\]

Example: Let \(X, Y \) be each \{-1, 1\} with equal prob
\[E = \{X = 1\}, \; F = \{Y = 1\}, \; G = \{XY = 1\} \]
\[P(EF) = P(E)P(F), \; P(EG) = P(E)P(G), \; P(FG) = P(F)P(G), \]
all \(1/4 \) but \(P(EFG) = 1/4 \) too!!! (because \(P(G|EF) = 1 \))
In general, events E_1, E_2, \ldots, E_n are independent if for every subset S of $\{1,2,\ldots, n\}$, we have

$$P \left(\bigcap_{i \in S} E_i \right) = \prod_{i \in S} P(E_i)$$

(Sometimes this property holds only for small subsets S. E.g., E, F, G on the previous slide are pairwise independent, but not fully independent.)
Suppose a biased coin comes up heads with probability p, independent of other flips.

$$
P(n \text{ heads in } n \text{ flips}) = p^n
$$

$$
P(n \text{ tails in } n \text{ flips}) = (1-p)^n
$$

$$
P(\text{exactly } k \text{ heads in } n \text{ flips}) = \binom{n}{k} p^k (1-p)^{n-k}
$$

Aside: note that the probability of some number of heads

$$
\sum_k \binom{n}{k} p^k (1-p)^{n-k} = (p + (1-p))^n = 1
$$

as it should, by the binomial theorem.
Suppose a biased coin comes up heads with probability p, *independent* of other flips

$$\Pr(\text{exactly } k \text{ heads in } n \text{ flips}) = \binom{n}{k} p^k (1 - p)^{n-k}$$

Note when $p=1/2$, this is the same result we would have gotten by considering n flips in the “equally likely outcomes” scenario. But $p \neq 1/2$ makes that inapplicable. Instead, the *independence* assumption allows us to conveniently assign a probability to each of the 2^n outcomes, e.g.:

$$\Pr(\text{HHTHTTT}) = p^2(1-p)p(1-p)^3 = p^{\#H}(1-p)^{\#T}$$
A data structure problem: fast access to small subset of data drawn from a large space.

A solution: hash function \(h: D \rightarrow R \) crunches/scrambles names from large space \(D \) into small one \(R \).

Example: if \(x \) is (or can be viewed as) an integer:

\[
h(x) = x \mod n
\]
Scenario: Hash $m \leq n$ keys from D into size n hash table.

How well does it work?

Worst case: All collide in one bucket. (Perhaps too pessimistic?)

Best case: No collisions. (Perhaps too optimistic?)

Exact analysis: …?

A middle ground: Probabilistic analysis.

Below, for simplicity, assume

- Keys drawn from D randomly, independently (with replacement)
- h maps equal numbers of domain points into each range bin, i.e., $|D| = k|R|$ for some integer k, and $|h^{-1}(i)| = k$ for all $0 \leq i \leq n-1$

Many possible questions; a few analyzed below
m keys hashed into a table with n buckets
Each string hashed is an independent sample from D
E = at least one string hashed to first bucket
What is P(E) ?
Solution:
\[F_i = \text{string } i \text{ not hashed into first bucket } (i=1,2,\ldots,m) \]
\[P(F_i) = \frac{n-1}{n} \text{ for all } i=1,2,\ldots,m \]
Event \((F_1 F_2 \ldots F_m) = \text{no strings hashed to first bucket}\)
\[P(E) = 1 - P(F_1 F_2 \cdots F_m) \]
\[= 1 - P(F_1) P(F_2) \cdots P(F_m) \]
\[= 1 - \left(\frac{n-1}{n}\right)^m \]
\[= 1 - \left[\left(\frac{n-1}{n}\right)^n\right]^{m/n} \]
\[\approx 1 - \exp\left(-\frac{m}{n}\right) \]
Let \(|R| = n\), \(D_0 \subseteq D\), \(|D_0| = m\). A hash function \(h:D \rightarrow R\) is perfect for \(D_0\) if \(h:D_0 \rightarrow R\) is injective (no collisions). How likely is that?

(i) Fix \(h\); pick \(m\) elements of \(D_0\) independently at random \(\in D\)

Again, suppose \(h\) maps \((1/n)^{th}\) of \(D\) to each element of \(R\). This is like the birthday problem:

\[
P(h \text{ is perfect for } D_0) = \frac{n}{n} \frac{n - 1}{n} \ldots \frac{n - m + 1}{n} = \frac{n!}{(n - m)! n^m}
\]

Except for very empty tables, a “perfect” hash is improbable

(Q: why less likely with larger \(n\), fixed \(m/n\)?)
Let $|R| = n$, $D_0 \subseteq D$, $|D_0| = m$. A hash function $h : D \rightarrow R$ is \textit{perfect} for D_0 if $h : D_0 \rightarrow R$ is injective (no collisions). How likely is that?

(ii) Fix D_0; pick h at random (among all with constant $|h^{-1}(i)|$)

E.g., if $m = |D_0| = 23$ and $n = 365$, then there is $\sim 50\%$ chance that the first h you try is perfect for this \textit{fixed} D_0. If it isn’t, pick $h(2), h(3), \ldots$. With high probability, you’ll quickly find a perfect one!

“Picking a random function h” is easier said than done, but, empirically, picking from a set of \textit{parameterized} fns like

$$h_{a,b}(x) = (a \cdot x + b) \mod n$$

where a, b are random 64-bit ints is a start.
Consider the following parallel network

\[P(\text{there is functional path}) = 1 - P(\text{all routers fail}) \]

\[= 1 - p_1 p_2 \cdots p_n \]

n routers, \(i^{\text{th}} \) has probability \(p_i \) of failing, independently
Contrast: a series network

\[P(\text{there is functional path}) = P(\text{no routers fail}) = (1 - p_1)(1 - p_2) \cdots (1 - p_n) \]
Recall: Two events E and F are independent if
\[P(EF) = P(E) \cdot P(F) \]

If E & F are independent, does that tell us anything about
\[P(EF|G), P(E|G), P(F|G), \]
when G is an arbitrary event? In particular, is
\[P(EF|G) = P(E|G) \cdot P(F|G) \]?

In general, no.
Roll two 6-sided dice, yielding values D_1 and D_2

- $E = \{ D_1 = 1 \}$
- $F = \{ D_2 = 6 \}$
- $G = \{ D_1 + D_2 = 7 \}$

E and F are independent

- $P(E|G) = 1/6$
- $P(F|G) = 1/6$, but
- $P(EF|G) = 1/6$, not $1/36$

so $E|G$ and $F|G$ are not independent!
Definition:
Two events E and F are called *conditionally independent given* G, if

$$P(EF|G) = P(E|G) \cdot P(F|G)$$

Or, equivalently (assuming $P(F)>0$, $P(G)>0$),

$$P(E|FG) = P(E|G)$$

Example:

- $E = \text{has lung cancer}$
- $F = \text{carries matches}$
- $G = \text{smokes cigarettes}$

} non-independent (I think)
Randomly choose a day of the week
 A = \{ \text{It is not a Monday} \}
 B = \{ \text{It is a Saturday} \}
 C = \{ \text{It is the weekend} \}
A and B are dependent events
 \[P(A) = \frac{6}{7}, \quad P(B) = \frac{1}{7}, \quad P(AB) = \frac{1}{7}. \]
Now condition both A and B on C:
 \[P(A|C) = 1, \quad P(B|C) = \frac{1}{2}, \quad P(AB|C) = \frac{1}{2} \]
 \[P(AB|C) = P(A|C) \cdot P(B|C) \Rightarrow A|C \text{ and } B|C \text{ independent} \]

Dependent events can become independent by conditioning on additional information!
Independence: summary

Events E & F are independent if

$$P(EF) = P(E) P(F), \text{ or, equivalently } P(E|F) = P(E) \text{ (if } P(E) > 0)$$

More than 2 events are indp if, for all subsets, joint probability = product of separate event probabilities

Dependent means correlated, associated, (partially) predictive

Independence can greatly simplify calculations

For fixed G, conditioning on G gives a probability measure, $P(E|G)$

But “conditioning” and “independence” are orthogonal:

- Events E & F that are (unconditionally) independent may become dependent when conditioned on G
- Events that are (unconditionally) dependent may become independent when conditioned on G