CSE 312: Foundations of Computing II
Quiz Section #9: Law of Large Numbers, Maximum Likelihood Estimation, and Confidence Intervals

Review/Mini-Lecture/Main Theorems and Concepts From Lecture

Weak Law of Large Numbers (WLLN): Let X_1, \ldots, X_n be iid random variables with common mean μ and variance σ^2. Let $\bar{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i$ be the sample mean for a sample of size n. Then, for any $\epsilon > 0$,
\[
\lim_{n \to \infty} P(\left| \bar{X}_n - \mu \right| > \epsilon) = 0.
\]

Strong Law of Large Numbers (SLLN): Let X_1, \ldots, X_n be iid random variables with common mean μ and variance σ^2. Let $\bar{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i$ be the sample mean for a sample of size n. Then,
\[
P(\lim_{n \to \infty} \bar{X}_n = \mu) = 1.
\] The SLLN implies the WLLN, but not vice versa.

Realization/Sample: A realization/sample x of a random variable X is the value that is actually observed.

Likelihood: Let x_1, \ldots, x_n be iid realizations from mass function $p_X(x \mid \theta)$ (if X discrete) or density $f_X(x \mid \theta)$ (if X continuous), where θ is a parameter (or a vector of parameters). We define the likelihood function to be the probability of seeing the data.

If X is discrete:
\[
L(x_1, \ldots, x_n \mid \theta) = P\left(\bigcap_{i=1}^{n} \{ X = x_i \} \mid \theta \right) = \prod_{i=1}^{n} p_X(x_i \mid \theta)
\]

If X is continuous:
\[
L(x_1, \ldots, x_n \mid \theta) = \prod_{i=1}^{n} f_X(x_i \mid \theta)
\]

Maximum Likelihood Estimator (MLE): We denote the MLE of θ as $\hat{\theta}_{MLE}$ or simply $\hat{\theta}$, as the parameter (or vector of parameters), that maximizes the likelihood function (probability of seeing the data).

\[
\hat{\theta}_{MLE} = \arg \max_{\theta} L(x_1, \ldots, x_n \mid \theta) = \arg \max_{\theta} \ln L(x_1, \ldots, x_n \mid \theta)
\]

Log-Likelihood: We define the log-likelihood as the natural logarithm of the likelihood function. Since the logarithm is a strictly increasing function, the value of θ that maximizes the likelihood will be exactly the same as the value that maximizes the log-likelihood.

If X is discrete:
\[
\ln L(x_1, \ldots, x_n \mid \theta) = \sum_{i=1}^{n} \ln p_X(x_i \mid \theta)
\]
If \(X \) is continuous:

\[
\ln L(x_1, ..., x_n | \theta) = \sum_{i=1}^{n} \ln f_X(x_i | \theta)
\]

Bias: The bias of an estimator \(\hat{\theta} \) for a true parameter \(\theta \) is defined as \(\text{Bias}(\hat{\theta}, \theta) = E[\hat{\theta}] - \theta \). An estimator \(\hat{\theta} \) of \(\theta \) is unbiased iff \(\text{Bias}(\hat{\theta}, \theta) = 0 \), or equivalently \(E[\hat{\theta}] = \theta \).

Steps to find the maximum likelihood estimator, \(\hat{\theta} \):
1. Find the likelihood and log-likelihood of the data.
2. Take the derivative of the log-likelihood and set it to 0 to find a candidate for the MLE, \(\hat{\theta} \)
3. Take the second derivative and show that \(\hat{\theta} \) indeed is a maximizer, that \(\frac{d^2L}{d\theta^2} < 0 \) at \(\hat{\theta} \). Also ensure that it is the global maximizer: check points of non-differentiability and boundary values.

Confidence Intervals: The MLE \(\hat{\theta} \) of a parameter \(\theta \) is wrong with probability 1. We say that:

\((\hat{\theta} - \Delta, \hat{\theta} + \Delta) \) is a 100(1 - \(\alpha \))% confidence interval for \(\theta \) if and only if \(P(\theta \in (\hat{\theta} - \Delta, \hat{\theta} + \Delta)) \geq 1 - \alpha \).

Exercises

1. Suppose \(x_1, ..., x_n \) are iid realizations from density

\[
f_X(x; \theta) = \begin{cases}
\frac{\theta x^{\theta-1}}{3\theta}, & 0 \leq x \leq 3 \\
0, & \text{otherwise}
\end{cases}
\]

Find the MLE for \(\theta \).
2. Suppose x_1, \ldots, x_{2n} are iid realizations from the Laplace density (double exponential density)

$$f_X(x; \theta) = \frac{1}{2} e^{-|x - \theta|}$$

Find the MLE for θ. You may find the sgn function useful:

$$\text{sgn}(x) = \begin{cases} +1, & x \geq 0 \\ -1, & x < 0 \end{cases}$$

3. Suppose X_1, \ldots, X_n are iid rv’s from some distribution with unknown mean θ and known variance σ^2, and your estimate $\hat{\theta}$ for its mean θ will be the sample mean $\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} X_i$. For full generality, construct a $100(1 - \alpha)$% confidence interval (centered around the estimate $\hat{\theta}$) for the true parameter θ. You may assume n is “sufficiently large”.
