Section #9 Review

CSE 312: Foundations of Computing I1
Quiz Section #9: Law of Large Numbers, Maximum Likelihood Estimation, and Confidence
Intervals

Review/Mini-Lecture/Main Theorems and Concepts From Lecture

Weak Law of Large Numbers (WLLN): Let X, ..., X}, be iid random variables with common mean y

and variance 02, Let X, = %Z?:l X; be the sample mean for a sample of size n. Then, for any € > 0,
lim, o P(|X,, — u| > €) = 0.

Strong Law of Large Numbers (SLLN): Let X, ..., X}, be iid random variables with common mean y

S 1
and variance 02, Let X, = - ™1 X; be the sample mean for a sample of size 1. Then,

P(limy,, X, = u) = 1. The SLLN implies the WLLN, but not vice versa.

Realization/Sample: A realization/sample X of a random variable X is the value that is actually
observed.

Likelihood: Let Xy, ... X, be iid realizations from mass function px (x | 8) (if X discrete) or density
fx(x | @) (if X continuous), where 8 is a parameter (or a vector of parameters). We define the likelihood

function to be the probability of secing the data.

If X is discrete:

L(xll e X | 9) = P(ﬂ{x = xi} | 0) = l_le(xi | 9)
i=1 i=1

L(xq, ., Xy | 0) = nfx(xi | 6)
i=1

If X is continuous:

Maximum Likelihood Estimator (MLE): We denote the MLE of 6 as éMLE or simply ] , as the

parameter (or vector of parameters), that maximizes the likelihood function (probability of seeing the data).

OyLg = arg max L(xq,...,x, | 8) = arg max InL(xq,...,%x, | 0)
Log-Likelihood: We define the log-likelihood as the natural logarithm of the likelihood function. Since
the logarithm is a strictly increasing function, the value of 8 that maximizes the likelihood will be exactly
the same as the value that maximizes the log-likelihood.

If X is discrete:

n
In LGty 10) = ) Inpy(x; 1 6)
i=1
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If X is continuous:

n
LGty % 10) = ) In fy(x:10)
i=1

Bias: The bias of an estimator 8 for a true parameter 6 is defined as Bias(@, 9) = E[é] — 6. An
estimator O of 0 is unbiased iff Bias(é, 9) = 0, or equivalently E[é] =0.

Steps to find the maximum likelihood estimator, 0:
1. Find the likelihood and log-likelihood of the data.

2. Take the derivative of the log-likelihood and set it to 0 to find a candidate for the MLE, ]

~ d?L ~
3. Take the second derivative and show that 8 indeed is a maximizer, that 292 < 0 at 6. Also ensure that it

is the global maximizer: check points of non—diffcrcntiability and boundary values.

Confidence Intervals: The MLE 8 of a parameter 0 is wrong with probability 1. We say that:
(6 —A,8+ A)isa100(1 — @)% confidence interval for 8 if and only if P (9 € (é — A0+ A)) =
1—a.

Exercises

1. Suppose X, ..., Xy, are iid realizations from density

3x9—1
o) =137+ O=x=3
0, otherwise
Find the MLE for 8.
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2. Suppose Xq, ..., X2y are iid realizations from the Laplace density (double exponential density)

1
i 0) = 2 )
Find the MLE for 6. You may find the sign function useful:

+1, x=0
sgn(x) = {—1 x<0

3. Suppose X1, ..., Xy, are iid rv’s from some distribution with unknown mean 6 and known variance & 2
~ ~ 1
and your estimate @ for its mean 6 will be the sample mean 6 = ~ i=1 X;. For full generality, construct a

100(1 — a)% confidence interval (centered around the estimate 9) for the true parameter 8. You may

assume M is “sufficiently large”.



