CSE 312: Foundations of Computing II

Quiz Section #9: Law of Large Numbers, Maximum Likelihood Estimation, and Confidence Intervals

Review/Mini-Lecture/Main Theorems and Concepts From Lecture

Weak Law of Large Numbers (WLLN): Let $X_1, ..., X_n$ be iid random variables with common mean μ and variance σ^2 . Let $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ be the sample mean for a sample of size n. Then, for any $\epsilon > 0$, $\lim_{n \to \infty} P(|\bar{X}_n - \mu| > \epsilon) = 0$.

Strong Law of Large Numbers (SLLN): Let $X_1, ..., X_n$ be iid random variables with common mean μ and variance σ^2 . Let $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ be the sample mean for a sample of size n. Then, $P(\lim_{n\to\infty} \bar{X}_n = \mu) = 1$. The SLLN implies the WLLN, but not vice versa.

Realization/Sample: A realization/sample x of a random variable X is the value that is actually observed.

Likelihood: Let $x_1, ... x_n$ be iid realizations from mass function $p_X(x \mid \theta)$ (if X discrete) or density $f_X(x \mid \theta)$ (if X continuous), where θ is a parameter (or a vector of parameters). We define the likelihood function to be the probability of seeing the data.

If *X* is discrete:

$$L(x_1, \dots, x_n \mid \theta) = P\left(\bigcap_{i=1}^n \{X = x_i\} \mid \theta\right) = \prod_{i=1}^n p_X(x_i \mid \theta)$$

If *X* is continuous:

$$L(x_1, ..., x_n \mid \theta) = \prod_{i=1}^n f_X(x_i \mid \theta)$$

Maximum Likelihood Estimator (MLE): We denote the MLE of θ as $\hat{\theta}_{MLE}$ or simply $\hat{\theta}$, as the parameter (or vector of parameters), that maximizes the likelihood function (probability of seeing the data).

$$\widehat{\theta}_{MLE} = \arg\max_{\theta} L(x_1, ..., x_n \mid \theta) = \arg\max_{\theta} \ln L(x_1, ..., x_n \mid \theta)$$

Log-Likelihood: We define the log-likelihood as the natural logarithm of the likelihood function. Since the logarithm is a strictly increasing function, the value of θ that maximizes the likelihood will be exactly the same as the value that maximizes the log-likelihood.

If *X* is discrete:

$$\ln L(x_1, \dots, x_n \mid \theta) = \sum_{i=1}^n \ln p_X(x_i \mid \theta)$$

If *X* is continuous:

$$\ln L(x_1, ..., x_n \mid \theta) = \sum_{i=1}^n \ln f_X(x_i \mid \theta)$$

Bias: The bias of an estimator $\hat{\theta}$ for a true parameter θ is defined as $Bias(\hat{\theta}, \theta) = E[\hat{\theta}] - \theta$. An estimator $\hat{\theta}$ of θ is unbiased iff $Bias(\hat{\theta}, \theta) = 0$, or equivalently $E[\hat{\theta}] = \theta$.

Steps to find the maximum likelihood estimator, $\hat{\theta}$:

- 1. Find the likelihood and log-likelihood of the data.
- 2. Take the derivative of the log-likelihood and set it to 0 to find a candidate for the MLE, $\widehat{ heta}$
- 3. Take the second derivative and show that $\hat{\theta}$ indeed is a maximizer, that $\frac{d^2L}{d\theta^2} < 0$ at $\hat{\theta}$. Also ensure that it is the global maximizer: check points of non-differentiability and boundary values.

Confidence Intervals: The MLE $\hat{\theta}$ of a parameter θ is wrong with probability 1. We say that: $(\hat{\theta} - \Delta, \hat{\theta} + \Delta)$ is a $100(1 - \alpha)\%$ confidence interval for θ if and only if $P\left(\theta \in (\hat{\theta} - \Delta, \hat{\theta} + \Delta)\right) \ge 1 - \alpha$.

Exercises

1. Suppose x_1, \dots, x_n are iid realizations from density

$$f_X(x;\theta) = \begin{cases} \frac{\theta x^{\theta-1}}{3^{\theta}}, & 0 \le x \le 3\\ 0, & otherwise \end{cases}$$

Find the MLE for θ .

Section #9 Review

2. Suppose x_1,\dots,x_{2n} are iid realizations from the Laplace density (double exponential density)

$$f_X(x;\theta) = \frac{1}{2}e^{-|x-\theta|}$$

Find the MLE for θ . You may find the ${f sign}$ function useful:

$$sgn(x) = \begin{cases} +1, & x \ge 0 \\ -1, & x < 0 \end{cases}$$

3. Suppose X_1, \ldots, X_n are iid rv's from some distribution with unknown mean θ and known variance σ^2 , and your estimate $\hat{\theta}$ for its mean θ will be the sample mean $\hat{\theta} = \frac{1}{n} \sum_{i=1}^n X_i$. For full generality, construct a $100(1-\alpha)\%$ confidence interval (centered around the estimate $\hat{\theta}$) for the true parameter θ . You may assume n is "sufficiently large".