Quiz Section #9: Supplementary Exercises

CSE 312: Foundations of Computing II

- 1. (a) Suppose $x_1, x_2, ..., x_n$ are independent samples from a normal distribution whose mean is known to be zero, but whose variance is unknown. What is the maximum likelihood estimator for its variance?
 - (b) Suppose the mean is known to be μ but the variance is unknown. How does the maximum likelihood estimator for the variance differ from the maximum likelihood estimator when both mean and variance are unknown?
- 2. Let $f(x \mid \theta) = \theta x^{\theta-1}$ for $0 \le x \le 1$, where θ is any positive real number. Let x_1, x_2, \ldots, x_n be independent samples from this distribution. Derive the maximum likelihood estimator $\hat{\theta}$.
- 3. You are given 100 independent samples $x_1, x_2, \ldots, x_{100}$ from Ber(*p*), where *p* is unknown. These 100 samples sum to 30. You would like to estimate the distribution's parameter *p*. Give all answers to 3 significant digits.
 - (a) What is the maximum likelihood estimator \hat{p} of p?
 - (b) Is \hat{p} an unbiased estimator of p?
 - (c) Give your best approximation for the 95% confidence interval of p.
 - (d) Give your best approximation for the 90% confidence interval of p.
 - (e) Give three different reasons why your answers to (c) and (d) are only approximations.
 - (f) Explain why it makes sense that the interval in (d) is bigger (or smaller, depending on your answers) than the interval in (c).
- 4. (a) Suppose that $\hat{\theta}$ is a biased estimator for θ with $E[\hat{\theta}] = \alpha \theta$, for some constant $\alpha > 0$. Find an unbiased estimator for θ and prove that it is unbiased.
 - (b) In lecture, we saw that the maximum likelihood estimator for the population variance θ_2 of N(θ_1, θ_2) is the sample variance

$$\hat{\theta}_2 = \frac{1}{n} \sum_{i=1}^n (x_i - \hat{\theta}_1)^2$$

where $\hat{\theta}_1$ is the sample mean. It can be shown that $E[\hat{\theta}_2] = \frac{n-1}{n} \cdot \theta_2$, so that $\hat{\theta}_2$ is biased and always underestimates the variance θ_2 . Use your result from part (a) to find an unbiased estimator of the variance θ_2 .