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CSE 312: Foundations of Computing II 
Quiz Section #8: Normal Distribution, Central Limit Theorem, Tail Bounds 
 
Review/Mini-Lecture/Main Theorems and Concepts From Lecture 
 

Normal (Gaussian, “bell curve”): 𝑋~𝑁(𝜇, 𝜎2) if 𝑋 has the following probability density function: 

𝑓𝑋(𝑥) =
1

𝜎√2𝜋
𝑒

−
1
2

(𝑥−𝜇)2

𝜎2 , 𝑥 ∈ ℝ 

𝐸[𝑋] = 𝜇 and 𝑉𝑎𝑟(𝑋) = 𝜎2.   The “standard normal” random variable is typically denoted 𝑍 and has 

mean 0 and variance 1.  If 𝑋~𝑁(𝜇, 𝜎2), then 𝑍 =
𝑋−𝜇

𝜎
~𝑁(0,1).  The CDF has no closed form, but we 

denote the CDF of the standard normal as Φ(𝑧) = 𝐹𝑍(𝑧) = 𝑃(𝑍 ≤ 𝑧).  Note from symmetry of the 

probability density function about 𝑧 = 0 that: Φ(−𝑧) = 1 − Φ(𝑧). 
 

Standardizing: Let 𝑋 be any random variable (discrete or continuous, not necessarily normal), with 

𝐸[𝑋] = 𝜇 and 𝑉𝑎𝑟(𝑋) = 𝜎2. If we let 𝑌 =
𝑋−𝜇

𝜎
, then 𝐸[𝑌] = 0 and 𝑉𝑎𝑟(𝑌) = 1. 

 

Closure of the Normal Distribution: Let 𝑋~𝑁(𝜇, 𝜎2).  Then, 𝑎𝑋 + 𝑏~𝑁(𝑎𝜇 + 𝑏, 𝑎2𝜎2).  That is, 
linear transformations of normal random variables are still normal.   
 

“Reproductive” Property of Normals: Let 𝑋1, … , 𝑋𝑛 be independent normal random variables with 

𝐸[𝑋𝑖] = 𝜇𝑖 and 𝑉𝑎𝑟(𝑋𝑖) = 𝜎𝑖
2.  Let 𝑎1, … , 𝑎𝑛 ∈ ℝ and 𝑏 ∈ ℝ.  Then,  

𝑋 = ∑ 𝑎𝑖𝑋𝑖

𝑛

𝑖=1

+ 𝑏~𝑁 (∑ 𝑎𝑖𝜇𝑖

𝑛

𝑖=1

+ 𝑏, ∑ 𝑎𝑖
2𝜎𝑖

2

𝑛

𝑖=1

) 

There’s nothing special about the parameters – the important result here is that the resulting random 
variable is still normally distributed. 
 

Central Limit Theorem (CLT): Let 𝑋1, … , 𝑋𝑛 be iid random variables with 𝐸[𝑋𝑖] = 𝜇 and 

𝑉𝑎𝑟(𝑋𝑖) = 𝜎2.  Let 𝑋 = ∑ 𝑋𝑖
𝑛
𝑖=1  which has 𝐸[𝑋] = 𝑛𝜇 and 𝑉𝑎𝑟(𝑋) = 𝑛𝜎2.  Let �̅� =

1

𝑛
∑ 𝑋𝑖

𝑛
𝑖=1 , 

which has 𝐸[�̅�] = 𝜇 and 𝑉𝑎𝑟(�̅�) =
𝜎2

𝑛
.  �̅� is called the sample mean.  Then, as 𝑛 → ∞, 𝑌 =

�̅�−𝜇

𝜎/√𝑛
~𝑁(0,1) (same as �̅�~𝑁 (𝜇,

𝜎2

𝑛
)).   Equivalently, 𝑌′ =

𝑋−𝑛𝜇

𝜎√𝑛
~𝑁(0,1) (same as 

𝑋~𝑁(𝑛𝜇, 𝑛𝜎2)).  It is no surprise that �̅� has mean 𝜇 and variance 𝜎2/𝑛 – this can be done with simple 

calculations. The importance of the CLT is that, for large 𝑛, regardless of what distribution 𝑋𝑖 comes from, 

�̅� is approximately normally distributed with mean 𝜇 and variance 𝜎2/𝑛.  Don’t forget the continuity 

correction, only when 𝑋1, … , 𝑋𝑛 are discrete random variables. 
 

Markov’s Inequality: Let 𝑋 be a non-negative random variable, and 𝛼 ∈ ℝ. Then, 𝑃(𝑋 ≥ 𝛼) ≤
𝐸[𝑋]

𝛼
. 

 

Chebyshev’s Inequality: Suppose 𝑌 is a random variable with 𝐸[𝑌] = 𝜇 and 𝑉𝑎𝑟(𝑋) = 𝜎2. Then, for 

any 𝛼 ∈ ℝ, 𝑃(|𝑌 − 𝜇| ≥ 𝛼) ≤
𝜎2

𝛼2. 
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Chernoff Bound (for the Binomial): Suppose 𝑋~𝐵𝑖𝑛(𝑛, 𝑝). Then, for any 0 < 𝛿 < 1, 

 𝑃(𝑋 > (1 + 𝛿)𝜇) ≤ 𝑒− 
𝛿2𝜇

3  

 𝑃(𝑋 < (1 − 𝛿)𝜇) ≤ 𝑒− 
𝛿2𝜇

2  
 
Exercises 
 

1. Suppose heights are normally distributed with some mean 𝜇 and variance 𝜎2.  If 2.28% of people are 

under 48 inches and 15.87% of people are above 72 inches, what is the probability that a random person 

is over 84 inches tall?  There is a standard normal cdf table on the last page. 
 
 
 
 
 
 
 
 
 
 

2. Suppose 𝑍 = 𝑋 + 𝑌, where 𝑋 ⊥ 𝑌.  𝑍 is called the convolution of two random variables.   

If 𝑋, 𝑌, 𝑍 are discrete, 

𝑝𝑍(𝑧) = 𝑃(𝑍 = 𝑧) = ∑ 𝑃(𝑋 = 𝑥 ∩ 𝑌 = 𝑧 − 𝑥)

𝑥

= ∑ 𝑝𝑋(𝑥)𝑝𝑌(𝑧 − 𝑥)

𝑥

 

If 𝑋, 𝑌, 𝑍 are continuous, 

𝐹𝑍(𝑧) = 𝑃(𝑋 + 𝑌 ≤ 𝑧) = ∫ 𝑃(𝑌 ≤ 𝑧 − 𝑋 | 𝑋 = 𝑥)𝑓𝑋(𝑥)𝑑𝑥
∞

−∞

= ∫ 𝐹𝑌(𝑧 − 𝑥)𝑓𝑋(𝑥)𝑑𝑥
∞

−∞

 

 

Suppose 𝑋1~𝑁(𝜇1, 𝜎1
2) and 𝑋2~𝑁(𝜇2, 𝜎2

2).   
 

a) Find an expression for 𝑃(𝑋1 < 2𝑋2) using a similar idea to convolution, in terms of 𝐹𝑋1
, 𝐹𝑋2

, 𝑓𝑋1
, 𝑓𝑋2

.  

(Your answer will be in the form of a single integral, and requires no calculations – do not evaluate it).   
 
 
 
 
 

b) Find 𝑠, where Φ(𝑠) = 𝑃(𝑋1 < 2𝑋2) using the “reproductive” property of normal distributions. 
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3. Suppose 𝑋1, … , 𝑋𝑛 are iid 𝑃𝑜𝑖(𝜆) random variables, and let �̅�𝑛 =
1

𝑛
∑ 𝑋𝑖

𝑛
𝑖=1 , the sample mean.  How 

large should we choose 𝑛 to be such that 𝑃 (
𝜆

2
≤ �̅�𝑛 ≤

3𝜆

2
) ≥ 0.99?  Use the CLT and give an answer 

involving Φ−1(∙). Then evaluate it exactly when 𝜆 = 1/10 and using the phi table below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


