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CSE 312: Foundations of Computing II 
Quiz Section #8: Normal Distribution, Central Limit Theorem, Tail Bounds 
 
Review/Mini-Lecture/Main Theorems and Concepts From Lecture 
 

Normal (Gaussian, “bell curve”): 𝑋~𝑁(𝜇, 𝜎2) if 𝑋 has the following probability density function: 

𝑓𝑋(𝑥) =
1

𝜎√2𝜋
𝑒

−
1
2

(𝑥−𝜇)2

𝜎2 , 𝑥 ∈ ℝ 

𝐸[𝑋] = 𝜇 and 𝑉𝑎𝑟(𝑋) = 𝜎2.   The “standard normal” random variable is typically denoted 𝑍 and has 

mean 0 and variance 1.  If 𝑋~𝑁(𝜇, 𝜎2), then 𝑍 =
𝑋−𝜇

𝜎
~𝑁(0,1).  The CDF has no closed form, but we 

denote the CDF of the standard normal as Φ(𝑧) = 𝐹𝑍(𝑧) = 𝑃(𝑍 ≤ 𝑧).  Note from symmetry of the 

probability density function about 𝑧 = 0 that: Φ(−𝑧) = 1 − Φ(𝑧). 
 

Standardizing: Let 𝑋 be any random variable (discrete or continuous, not necessarily normal), with 

𝐸[𝑋] = 𝜇 and 𝑉𝑎𝑟(𝑋) = 𝜎2. If we let 𝑌 =
𝑋−𝜇

𝜎
, then 𝐸[𝑌] = 0 and 𝑉𝑎𝑟(𝑌) = 1. 

 

Closure of the Normal Distribution: Let 𝑋~𝑁(𝜇, 𝜎2).  Then, 𝑎𝑋 + 𝑏~𝑁(𝑎𝜇 + 𝑏, 𝑎2𝜎2).  That is, 
linear transformations of normal random variables are still normal.   
 

“Reproductive” Property of Normals: Let 𝑋1, … , 𝑋𝑛 be independent normal random variables with 

𝐸[𝑋𝑖] = 𝜇𝑖 and 𝑉𝑎𝑟(𝑋𝑖) = 𝜎𝑖
2.  Let 𝑎1, … , 𝑎𝑛 ∈ ℝ and 𝑏 ∈ ℝ.  Then,  

𝑋 = ∑ 𝑎𝑖𝑋𝑖

𝑛

𝑖=1

+ 𝑏~𝑁 (∑ 𝑎𝑖𝜇𝑖

𝑛

𝑖=1

+ 𝑏, ∑ 𝑎𝑖
2𝜎𝑖

2

𝑛

𝑖=1

) 

There’s nothing special about the parameters – the important result here is that the resulting random 
variable is still normally distributed. 
 

Central Limit Theorem (CLT): Let 𝑋1, … , 𝑋𝑛 be iid random variables with 𝐸[𝑋𝑖] = 𝜇 and 

𝑉𝑎𝑟(𝑋𝑖) = 𝜎2.  Let 𝑋 = ∑ 𝑋𝑖
𝑛
𝑖=1  which has 𝐸[𝑋] = 𝑛𝜇 and 𝑉𝑎𝑟(𝑋) = 𝑛𝜎2.  Let 𝑋̅ =

1

𝑛
∑ 𝑋𝑖

𝑛
𝑖=1 , 

which has 𝐸[𝑋̅] = 𝜇 and 𝑉𝑎𝑟(𝑋̅) =
𝜎2

𝑛
.  𝑋̅ is called the sample mean.  Then, as 𝑛 → ∞, 𝑌 =

𝑋̅−𝜇

𝜎/√𝑛
~𝑁(0,1) (same as 𝑋̅~𝑁 (𝜇,

𝜎2

𝑛
)).   Equivalently, 𝑌′ =

𝑋−𝑛𝜇

𝜎√𝑛
~𝑁(0,1) (same as 

𝑋~𝑁(𝑛𝜇, 𝑛𝜎2)).  It is no surprise that 𝑋̅ has mean 𝜇 and variance 𝜎2/𝑛 – this can be done with simple 

calculations. The importance of the CLT is that, for large 𝑛, regardless of what distribution 𝑋𝑖 comes from, 

𝑋̅ is approximately normally distributed with mean 𝜇 and variance 𝜎2/𝑛.  Don’t forget the continuity 

correction, only when 𝑋1, … , 𝑋𝑛 are discrete random variables. 
 

Markov’s Inequality: Let 𝑋 be a non-negative random variable, and 𝛼 ∈ ℝ. Then, 𝑃(𝑋 ≥ 𝛼) ≤
𝐸[𝑋]

𝛼
. 

 

Chebyshev’s Inequality: Suppose 𝑌 is a random variable with 𝐸[𝑌] = 𝜇 and 𝑉𝑎𝑟(𝑋) = 𝜎2. Then, for 

any 𝛼 ∈ ℝ, 𝑃(|𝑌 − 𝜇| ≥ 𝛼) ≤
𝜎2

𝛼2. 
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Chernoff Bound (for the Binomial): Suppose 𝑋~𝐵𝑖𝑛(𝑛, 𝑝). Then, for any 0 < 𝛿 < 1, 

 𝑃(𝑋 > (1 + 𝛿)𝜇) ≤ 𝑒− 
𝛿2𝜇

3  

 𝑃(𝑋 < (1 − 𝛿)𝜇) ≤ 𝑒− 
𝛿2𝜇

2  
 
Exercises 
 

1. Suppose heights are normally distributed with some mean 𝜇 and variance 𝜎2.  If 2.28% of people are 

under 48 inches and 15.87% of people are above 72 inches, what is the probability that a random person 

is over 84 inches tall?  There is a standard normal cdf table on the last page. 
 
 
 
 
 
 
 
 
 
 

2. Suppose 𝑍 = 𝑋 + 𝑌, where 𝑋 ⊥ 𝑌.  𝑍 is called the convolution of two random variables.   

If 𝑋, 𝑌, 𝑍 are discrete, 

𝑝𝑍(𝑧) = 𝑃(𝑍 = 𝑧) = ∑ 𝑃(𝑋 = 𝑥 ∩ 𝑌 = 𝑧 − 𝑥)

𝑥

= ∑ 𝑝𝑋(𝑥)𝑝𝑌(𝑧 − 𝑥)

𝑥

 

If 𝑋, 𝑌, 𝑍 are continuous, 

𝐹𝑍(𝑧) = 𝑃(𝑋 + 𝑌 ≤ 𝑧) = ∫ 𝑃(𝑌 ≤ 𝑧 − 𝑋 | 𝑋 = 𝑥)𝑓𝑋(𝑥)𝑑𝑥
∞

−∞

= ∫ 𝐹𝑌(𝑧 − 𝑥)𝑓𝑋(𝑥)𝑑𝑥
∞

−∞

 

 

Suppose 𝑋1~𝑁(𝜇1, 𝜎1
2) and 𝑋2~𝑁(𝜇2, 𝜎2

2).   
 

a) Find an expression for 𝑃(𝑋1 < 2𝑋2) using a similar idea to convolution, in terms of 𝐹𝑋1
, 𝐹𝑋2

, 𝑓𝑋1
, 𝑓𝑋2

.  

(Your answer will be in the form of a single integral, and requires no calculations – do not evaluate it).   
 
 
 
 
 

b) Find 𝑠, where Φ(𝑠) = 𝑃(𝑋1 < 2𝑋2) using the “reproductive” property of normal distributions. 
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3. Suppose 𝑋1, … , 𝑋𝑛 are iid 𝑃𝑜𝑖(𝜆) random variables, and let 𝑋̅𝑛 =
1

𝑛
∑ 𝑋𝑖

𝑛
𝑖=1 , the sample mean.  How 

large should we choose 𝑛 to be such that 𝑃 (
𝜆

2
≤ 𝑋̅𝑛 ≤

3𝜆

2
) ≥ 0.99?  Use the CLT and give an answer 

involving Φ−1(∙). Then evaluate it exactly when 𝜆 = 1/10 and using the phi table below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


