CSE 312: Foundations of Computing II Quiz Section #6: Variance, Independence, Zoo of Discrete Random Variables

Review/Mini-Lecture/Main Theorems and Concepts From Lecture

Variance: Let *X* be a random variable and $\mu = E[X]$. The variance of *X* is defined to be Var(X) =______

Notice that since this is an expectation of a ______ random variable $((X - \mu)^2)$, variance is always _____. With some algebra, we can simplify this to $Var(X) = E[X^2] - E^2[X]$.

Independence: Random variables *X* and *Y* are independent, written $X \perp Y$, iff

In this case, we have E[XY] = E[X]E[Y] (the converse is not necessarily true).

i.i.d. (independent and identically distributed): Random variables X_1, \ldots, X_n are i.i.d. (or iid) if they are ______ and have the same ______.

Property of Variance: Let $a, b \in \mathbb{R}$ and X a random variable. Then,

Var(aX + b) =_____

Linearity of Variance: If $X \perp Y$, Var(X + Y) = Var(X) + Var(Y). Linearity of variance depends on independence, whereas linearity of expectation always holds. Note that this combined with the above show that $\forall a, b, c \in \mathbb{R}$ and if $X \perp Y$,

 $Var(aX + bY + c) = _$

Zoo of Discrete Random Variables

Uniform: $X \sim Unif(a, b)$ if X has the following probability mass function:

$$p_X(k) = \frac{1}{b-a+1}, \qquad k = a, \dots, b$$

 $E[X] = \frac{a+b}{2}$ and $Var(X) = \frac{(b-a)(b-a+2)}{12}$. This represents each integer from [a, b] to be equally likely. For example, a single roll of a fair die is Unif(1,6).

Bernoulli (or indicator): $X \sim Ber(p)$ if X has the following probability mass function:

$$p_X(k) = \begin{cases} p, & k = 1\\ 1 - p, & k = 0 \end{cases}$$

E[X] = p and Var(X) = p(1-p). An example of a Bernoulli r.v. is one flip of a coin with P(head) = p. By a clever trick, we can write

$$p_X(k) = p^k (1-p)^{1-k}, \qquad k = 0,1$$

Binomial: $X \sim Bin(n, p)$ if X is the sum of iid Ber(p) random variables, and has pmf

$$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}, \qquad k = 0, 1, ..., n$$

E[X] = np and Var(X) = np(1-p). An example of a Binomial r.v. is the number of heads in n independent flips of a coin with P(head) = p. Note that $Bin(1,p) \equiv Ber(p)$. As $n \to \infty$ and $p \to 0$, with $np = \lambda$, then $Bin(n,p) \to Poi(\lambda)$. If X_1, \ldots, X_n are independent Binomial r.v.'s, where $X_i \sim Bin(N_i, p)$, then $X = X_1 + \cdots + X_n \sim Bin(N_1 + \cdots + N_n, p)$.

Geometric: $X \sim Geo(p)$ if X has the following probability mass function:

 $p_X(k) = (1-p)^{k-1}p, \quad k = 1,2, ...$ $E[X] = \frac{1}{p}$ and $Var(X) = \frac{1-p}{p^2}$. An example of a Geometric r.v. is the number of independent coin flips up to and including the first head, where P(head) = p.

Negative Binomial: $X \sim NegBin(r, p)$ if X is the sum of iid Geometric random variables, and has pmf $p_X(k) = {\binom{k-1}{r-1}} p^r (1-p)^{k-r}, \qquad k = r, r+1, \dots$

 $E[X] = \frac{r}{p}$ and $Var(X) = \frac{r(1-p)}{p^2}$. An example of a Negative Binomial r.v. is the number of independent coin flips up to an including the r^{th} head, where P(head) = p. If X_1, \dots, X_n are independent Negative Binomial r.v.'s, where $X_i \sim NegBin(r_i, p)$, then $X = X_1 + \dots + X_n \sim NegBin(r_1 + \dots + r_n, p)$.

Poisson: $X \sim Poi(\lambda)$ if *X* has the following probability mass function:

$$p_X(k) = e^{-\lambda} \frac{\lambda^{\kappa}}{k!}, \qquad k = 0, 1, ...$$

 $E[X] = \lambda$ and $Var(X) = \lambda$. An example of a Poisson r.v. is the number of people being born in a minute, where λ is the average rate per unit time. If $X_1, ..., X_n$ are independent Poisson r.v.'s, where $X_i \sim Poi(\lambda_i)$, then $X = X_1 + \cdots + X_n \sim Poi(\lambda_1 + \cdots + \lambda_n)$.

Hypergeometric: *X*~*HypGeo*(*N*, *K*, *n*) if *X* has the following probability mass function:

$$p_X(k) = \frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}, \qquad k = \max\{0, n+K-N\}, \dots, \min\{K, n\}$$

 $E[X] = n\frac{\kappa}{N}$. This represents the number of successes drawn, when n items are drawn from a bag with N items (K of which are successes, and N - K failures) without replacement. If we did this with replacement, then this scenario would be represented as $Bin(n, \frac{\kappa}{N})$.

Exercises

1. Suppose I am fishing in a pond with *B* blue fish, *R* red fish, and *G* green fish, where B + R + G = N. For each of the following scenarios: identify the most appropriate distribution (with parameter(s)):

a) how many of the next 10 fish I catch are blue, if I catch and release

- b) how many fish I had to catch until my first green fish, if I catch and release
- c) how many red fish I catch in the next five minutes, if I catch on average r red fish per minute
- d) whether or not my next fish is blue

e) how many of the next 10 fish I catch are blue, if I do not release the fish back to the pond after each catch

f) how many fish I have to catch until I catch three red fish, if I catch and release

2. Suppose I have Y_1, \dots, Y_n iid with $E[Y_i] = \mu$ and $Var(Y_i) = \sigma^2$, and let $Y = \frac{1}{n} \sum_{i=1}^n iY_i$. What is E[Y] and Var(Y)? Recall that $\sum_{i=1}^n i = \frac{n(n+1)}{2}$ and $\sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}$.

3. Is the following statement true or false? If E[XY] = E[X]E[Y], then $X \perp Y$. If it is true, prove it. If not, provide a counterexample.

4. Suppose we roll two fair 5-sided dice independently. Let X be the value of the first die, Y be the value of the second die, Z = X + Y be their sum, $U = \min\{X, Y\}$ and $V = \max\{X, Y\}$.

a) Find $p_U(u)$.

b) Find E[U].

c) Find E[Z].

d) Find E[UV].

e) Find Var(U + V).

5. Suppose *X* has the following probability mass function:

$$p_{X}(x) = \begin{cases} c, & x = 0\\ 2c, & x = \frac{\pi}{2}\\ c, & x = \pi\\ 0, & otherwise \end{cases}$$

a) Suppose
$$Y_1 = \sin(X)$$
. Find $E[Y_1^2]$

b) Suppose
$$Y_2 = \cos(X)$$
. Find $E[Y_2^2]$.

c) Suppose $Y = Y_1^2 + Y_2^2 = \sin^2(X) + \cos^2(X)$. Before any calculation, what do you think E[Y] should be? Find E[Y], and see if your hypothesis was correct. (Recall for any real number x, $\sin^2(x) + \cos^2(x) = 1$).

d) Let W be any discrete random variable with probability mass function $p_W(w)$. Then, $E[\sin^2(W) + \cos^2(W)] = 1$. Is this statement always true? If so, prove it. If not, give a counterexample by giving a probability mass function for a discrete random variable W for which the statement is false.

6. If electricity power failures occur according to a Poisson distribution with an average of 3 failures every twenty weeks, calculate the probability that there will be more than one failure during a particular week.

7. A company makes electric motors. The probability an electric motor is defective is 0.01, independent of other motors made. What is the probability that a sample of 300 electric motors will contain exactly 5 defective motors? Do it first exactly, then approximate it with the Poisson. How good was the approximation?

8. An average page in a book contains one typo. What is the probability that there are exactly 8 typos in a given 10-page chapter, using the Poisson model?

Cool puzzles from earlier topics

9. A plane has 100 seats and 100 passengers. The first person to get on the plane lost his ticket and doesn't know his assigned seat, so he picks a seat uniformly at random to sit in. Every remaining person knows their seat, so if it is available they sit in it, and if it is unavailable they pick a uniform random remaining seat. What is the probability the last person to get on gets to sit in his own seat?

10. Suppose you're on a game show, and you're given the choice of three doors. Behind one door is a car, behind the others, goats. You pick a door, say number 1, and the host, who knows what's behind the doors, opens another door, say number 3, which has a goat. He says to you, "Do you want to pick door number 2?" Is it to your advantage to switch your choice of doors?

11. You flip a fair coin independently and count the number of flips until the first tail, including that tail flip in the count. If the count is n, you receive 2^n dollars. What is the expected amount you will receive? How much would you be willing to pay at the start to play this game?