CSE 312: Foundations of Computing II

Quiz Section \#4: Discrete Random Variables

Review/Mini-Lecture/Main Theorems and Concepts From Lecture

Random Variable (rv): A numeric function $X: \Omega \rightarrow \mathbb{R}$ of the outcome.
Range/Support: The support/range of a random variable X, denoted Ω_{X}, is the set of all possible values that X can take on.

Discrete Random Variable (drv): A random variable taking on a \qquad (either finite or countably infinite) number of possible values.

Probability Mass Function (pmf) for a discrete random variable \boldsymbol{X} : a function p_{X} : $\Omega_{X} \rightarrow[0,1]$ with $p_{X}(x)=P(X=x)$ that maps possible values of a discrete random variable to the probability of that value happening, such that $\sum_{x} p_{X}(x)=$ \qquad _.

Expectation (expected value, mean, or average): The expectation of a discrete random variable is defined to be

$$
E[X]=\sum
$$

The expectation of a function of a discrete random variable $g(X)$ is

$$
E[g(X)]=\sum
$$

Linearity of Expectation: Let X and Y be random variables, and $a, b, c \in \mathbb{R}$. Then,

$$
E[a X+b Y+c]=
$$

Exercises

1. Suppose we have N items in a bag, K of which are successes. Suppose we draw (without replacement) until we have k successes, $k \leq K \leq N$. Let X be the number of draws until the $k^{t h}$ success. What is Ω_{X} ? What is $p_{X}(n)=P(X=n)$? (We say X is a "negative hypergeometric" random variable).
2. A frog starts on a 1 -dimensional number line at 0 . At each second, independently, the frog takes a unit step right with probability p_{1}, to the left with probability p_{2}, and doesn't move with probability p_{3}, where $p_{1}+p_{2}+p_{3}=1$. After 2 seconds, let X be the location of the frog. Find the probability mass function for $X, p_{X}(k)$. Find $E[X]$. Find the probability mass function for $Y=|X|, p_{Y}(k)$, and $E[Y]$.
3. Suppose we have r independent random variables X_{1}, \ldots, X_{r} that each represent the number of coins flipped up to and including the first head, where $P($ head $)=p$. Recall that each X_{i} has probability mass function,

$$
p_{X_{i}}(k)=P\left(X_{i}=k\right)=(1-p)^{k-1} p
$$

a) What do you think $E\left[X_{i}\right]$ should be (without calculations) if $p=\frac{1}{2}$? If $p=\frac{1}{3}$? In the general case? (Proof in lecture next time.)
b) Suppose we define $X=X_{1}+\cdots+X_{r}$. What does X represent, in English words? (Hint: think of performing each "trial" one after the other.)
c) What is Ω_{X} ? Find the probability mass function for $X, p_{X}(k)$.
d) Find $E[X]$ using linearity of expectation.

