CSE 312: Foundations of Computing II Quiz Section #4: Discrete Random Variables

Review/Mini-Lecture/Main Theorems and Concepts From Lecture

Random Variable (rv): A numeric function $X: \Omega \to \mathbb{R}$ of the outcome.

Range/Support: The support/range of a random variable X, denoted Ω_X , is the set of all possible values that X can take on.

Discrete Random Variable (drv): A random variable taking on a ______ (either finite or countably infinite) number of possible values.

Probability Mass Function (pmf) for a discrete random variable X: a function $p_X: \Omega_X \to [0,1]$ with $p_X(x) = P(X = x)$ that maps possible values of a discrete random variable to the probability of that value happening, such that $\sum_x p_X(x) =$ ____.

Expectation (expected value, mean, or average): The expectation of a discrete random variable is defined to be

$$E[X] = \sum_{n=1}^{\infty} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{$$

The expectation of a function of a discrete random variable g(X) is

$$E[g(X)] = \sum_{m}$$

Linearity of Expectation: Let *X* and *Y* be random variables, and $a, b, c \in \mathbb{R}$. Then,

$$E[aX + bY + c] = _$$

Exercises

1. Suppose we have N items in a bag, K of which are successes. Suppose we draw (without replacement) until we have k successes, $k \le K \le N$. Let X be the number of draws until the k^{th} success. What is Ω_X ? What is $p_X(n) = P(X = n)$? (We say X is a "negative hypergeometric" random variable).

Section #4 Review

2. A frog starts on a 1-dimensional number line at 0. At each second, independently, the frog takes a unit step right with probability p_1 , to the left with probability p_2 , and doesn't move with probability p_3 , where $p_1 + p_2 + p_3 = 1$. After 2 seconds, let X be the location of the frog. Find the probability mass function for X, $p_X(k)$. Find E[X]. Find the probability mass function for Y = |X|, $p_Y(k)$, and E[Y].

3. Suppose we have r independent random variables $X_1, ..., X_r$ that each represent the number of coins flipped up to and including the first head, where P(head) = p. Recall that each X_i has probability mass function,

$$p_{X_i}(k) = P(X_i = k) = (1 - p)^{k-1}p$$

a) What do you think $E[X_i]$ should be (without calculations) if $p = \frac{1}{2}$? If $p = \frac{1}{3}$? In the general case? (Proof in lecture next time.)

b) Suppose we define $X = X_1 + \cdots + X_r$. What does X represent, in English words? (Hint: think of performing each "trial" one after the other.)

c) What is Ω_X ? Find the probability mass function for X, $p_X(k)$.

d) Find E[X] using linearity of expectation.