CSE 312: Foundations of Computing II
Quiz Section #4: Discrete Random Variables

Review/Mini-Lecture/Main Theorems and Concepts From Lecture

Random Variable (rv): A numeric function $X : \Omega \rightarrow \mathbb{R}$ of the outcome.

Range/Support: The support/range of a random variable X, denoted Ω_X, is the set of all possible values that X can take on.

Discrete Random Variable (drv): A random variable taking on a countable (either finite or countably infinite) number of possible values.

Probability Mass Function (pmf) for a discrete random variable X: a function $p_X : \Omega_X \rightarrow [0,1]$ with $p_X(x) = P(X = x)$ that maps possible values of a discrete random variable to the probability of that value happening, such that $\sum_x p_X(x) = 1$.

Expectation (expected value, mean, or average): The expectation of a discrete random variable is defined to be $E[X] = \sum_x x p_X(x) = \sum_x xP(X = x)$. The expectation of a function of a discrete random variable $g(X)$ is $E[g(X)] = \sum_x g(x)p_X(x)$.

Linearity of Expectation: Let X and Y be random variables, and $a, b, c \in \mathbb{R}$. Then, $E[ax + by + c] = aE[X] + bE[Y] + c$.

Exercises

1. Suppose we have N items in a bag, K of which are successes. Suppose we draw (without replacement) until we have k successes, $k \leq K \leq N$. Let X be the number of draws until the k^{th} success. What is Ω_X? What is $p_X(n) = P(X = n)$? (We say X is a “negative hypergeometric” random variable).

 $p_X(n) = P(X = n) = \frac{\Omega_X = \{k, k+1, \ldots, N-K+k\}}{\binom{k-1}{n-k}\binom{N-k}{K-(k-1)}\frac{N}{N-(n-1)}, n = k, k+1, \ldots, N-K+k}$

2. A frog starts on a 1-dimensional number line at 0. At each second, independently, the frog takes a unit step right with probability p_1, to the left with probability p_2, and doesn’t move with probability p_3, where $p_1 + p_2 + p_3 = 1$. After 2 seconds, let X be the location of the frog. Find the probability mass function for X, $p_X(k)$. Find $E[X]$. Find the probability mass function for $Y = |X|$, $p_Y(k)$, and $E[Y]$.

Let L be a left step, R be a right step, and N be no step.

\[
P(X = -2) = P(LL) = p_2^2 \\
P(X = 2) = P(RR) = p_1^2 \\
P(X = 1) = P(RN \cup NR) = 2p_1p_3
\]
\[P(X = -1) = P(LN \cup NL) = 2p_2p_3 \]
\[P(X = 0) = P(NN \cup LR \cup RL) = p_3^2 + 2p_1p_2 \]

\[p_X(k) = \begin{cases}
 p_2^2, & k = -2 \\
 2p_2p_3, & k = -1 \\
 p_3^2 + 2p_1p_2, & k = 0 \\
 2p_1p_3, & k = 1 \\
 p_1^2, & k = 2
\end{cases} \]

\[E[X] = -2p_2^2 - 2p_2p_3 + 2p_1p_3 + 2p_1^2 \]

\[p_Y(k) = \begin{cases}
 p_3^2 + 2p_1p_2, & k = 0 \\
 2p_3(p_1 + p_2), & k = 1 \\
 p_1^2 + p_2^2, & k = 2
\end{cases} \]

\[E[Y] = 2p_3(p_1 + p_2) + 2(p_1^2 + p_2^2) \]

3. Suppose we have \(r \) independent random variables \(X_1, \ldots, X_r \) that each represent the number of coins flipped up to and including the first head, where \(P(\text{head}) = p \). Recall that each \(X_i \) has probability mass function,

\[p_{X_i}(k) = P(X_i = k) = (1 - p)^{k-1}p \]

a) What do you think \(E[X_i] \) should be (without calculations) if \(p = \frac{1}{2} \)? If \(p = \frac{1}{3} \)? In the general case? (Proof in lecture next time.)

Should be 2, 3, and \(\frac{1}{p} \) in general.

b) Suppose we define \(X = X_1 + \cdots + X_r \). What does \(X \) represent, in English words? (Hint: think of performing each “trial” one after the other.)

The number of coins flipped up to and including the \(r^{th} \) head.

c) What is \(\Omega_X \)? Find the probability mass function for \(X, p_X(k) \).

\[p_X(k) = \binom{k-1}{r-1} p^r (1-p)^{k-r}, \quad k = r, r+1, \ldots \]

d) Find \(E[X] \) using linearity of expectation.

\[E[X] = E \left[\sum_{i=1}^{r} X_i \right] = \sum_{i=1}^{r} E[X_i] = \sum_{i=1}^{r} \frac{1}{p} = \frac{r}{p} \]