CSE 312: Foundations of Computing II
Quiz Section \#3: Conditional Probability

Review/Mini-Lecture/Main Theorems and Concepts From Lecture

Conditional Probability: $P(A \mid B)=$ \qquad
Independence: Events E and F are independent iff
$P(E \cap F)=$ \qquad , or equivalently
$P(F)=$ \qquad or $P(E)=$ \qquad
Bayes Theorem: $P(A \mid B)=$ \qquad
Partition: Nonempty events E_{1}, \ldots, E_{n} partition the sample space Ω iff

- E_{1}, \ldots, E_{n} are exhaustive: \qquad , and
- $\quad E_{1}, \ldots, E_{n}$ are pairwise mutually exclusive: \qquad
- Note that for any event A (with $A \neq \emptyset$ and $A \neq \Omega$): ___ and ___ partition Ω

Law of Total Probability (LTP): Suppose A_{1}, \ldots, A_{n} partition Ω and let B be any event. Then, $P(B)=$ \qquad
\qquad
Bayes Theorem with LTP: Suppose A_{1}, \ldots, A_{n} partition Ω and let A and B be events. Then,

$$
P(A \mid B)=
$$

\qquad $=$ \qquad
Chain Rule: Suppose A_{1}, \ldots, A_{n} are events. Then

$$
P\left(A_{1} \cap \ldots \cap A_{n}\right)=
$$

\qquad

Exercises

1. Suppose we randomly generate a number from the naturals $(\mathbb{N}=\{1,2, \ldots\})$, and let A_{k} be the event we generate the number k, and suppose $P\left(A_{k}\right)=\left(\frac{1}{2}\right)^{k}$. Once we generate a number, suppose the probability that we win $\$ j$ for $j=1, \ldots, k$ is uniform $-\frac{1}{k}$. Let B be the event we win exactly $\$ 1$. What is $P\left(A_{1} \mid B\right)$? (You may use the fact that $\sum_{j=1}^{\infty} \frac{1}{j \cdot a^{j}}=\ln \left(\frac{a}{a-1}\right)$ for $a>1$).
2. Suppose there are three possible teachers to take CSE 312 from: Martin Tompa, Anna Karlin, and Larry Ruzzo. Suppose the ratio of grades $A: B: C: D: F$ for Martin's class is $1: 2: 3: 4: 5$, for Anna's class is $3: 4: 5: 1: 2$, and for Larry's class is $5: 4: 3: 2: 1$. Suppose you are assigned a grade randomly according to the given ratios when you take a class from one of these professors, irrespective of your performance. Furthermore, suppose Martin teaches your class with probability $\frac{1}{2}$ and Anna and Larry have an equal chance of teaching if Martin isn't. What is the probability you had Martin, given that you received an A ? Compare this to the unconditional probability that you had Martin.
3. Suppose we have a coin with probability of heads p. Suppose we flip this coin n times independently. Let X be the number of heads that we observe. What is $P(X=k)$, for $k=0, \ldots n$? Verify that $\sum_{k=0}^{n} P(X=k)=1$, as it should.
4. Suppose we have a coin with probability of heads p. Suppose we flip this coin until we flip a head for the first time. Let X be the number of times we flip the coin up to and including the first head. What is $P(X=k)$, for $k=1,2, \ldots$? Verify that $\sum_{k=1}^{\infty} P(X=k)=1$, as it should. (You may use the fact that $\sum_{j=0}^{\infty} a^{j}=\frac{1}{1-a}$ for $\left.|a|<1\right)$.
