Linearity of Expectation

Defn: If \(X \) is a random variable and \(g \) is a function, \(E[g(X)] = \sum_x g(x)p(x) \)

Theorem: For any constants \(a \) and \(b \),
\[E[aX+b] = aE[X]+b. \]

Proof: \[E[aX+b] = \sum_x (aX+b)p(x) \]
\[= a \sum_x xp(x) + b \sum_x p(x) = aE[X] + b \]

Ex: You pay $1 to play the following game. A fair coin is flipped up to and including the first head, and you are paid 12$ per flip. Do you expect to win or lose money?

Let \(X \) be the number of flips until the first head.
Your expected gain is \(E[12X-100] = 12E[X]-100 \)
\[= 12 \cdot 8 - 100 = -4 \] because \(E[X] = \frac{1}{1/2} = 8 \)

Theorem: Let \(X \) and \(Y \) be two random variables, possibly dependent. Then \(E[X+Y] = E[X] + E[Y] \).

Proof: Let \((X(s), Y(s)) \) be the values of \(X, Y \) for some \(s \in \Omega \).
\[E[X+Y] = \sum_{s \in \Omega} (X(s)+Y(s))p(s) = \sum_{s \in \Omega} X(s)p(s) + \sum_{s \in \Omega} Y(s)p(s) \]
\[= E[X] + E[Y] \]
Ex: Let X be the number of heads when a coin with $P(\text{Heads}) = p$ is flipped n times independently.

Let $X_i = 1$, if ith flip is heads, for $1 \leq i \leq n$, 0 otherwise.

"Indicator random variables" only have values 0 or 1.

\[
E[X_i] = 1 \cdot P(X_i = 1) + 0 \cdot P(X_i = 0) = P(i\text{-th flip is Heads})
\]

\[
X = \sum_{i=1}^n X_i
\]

\[
E[X] = E[\sum_{i=1}^n X_i] = \sum_{i=1}^n E[X_i] = \sum_{i=1}^n p = np
\]

Linearity is special. In general, $E[XY] \neq E[X]E[Y]$

$E[X^2] \neq (E[X])^2$

$E[\sqrt{X}] \neq \sqrt{E[X]}$

$E(X!) \neq (E[X])!$

Variance