Ex: n chips manufactured, d of them defective. k chips selected randomly from the n for testing. What is P(k selected chips contain some defective chip)?

Let \(\Omega \) be all the ways of choosing a set of k chips from the n chips.

Let \(E \) be all ways of choosing a set of k chips with none of them defective. (Complement)

\[
P(\text{none of } k \text{ defective}) = P(E) = \frac{n-d}{n}^{k}
\]

\[
P(\geq 1 \text{ of } k \text{ defective}) = P(\bar{E}) = 1 - P(E) = 1 - \frac{n-d}{n}^{k}
\]

Conditional Probability of E given F, written P(\(E | F \)), where F \(\neq \emptyset \), is the probability that E occurs, given that F was observed.

Sample space reduced to F, event is reduced to \(E \cap F \).

With equally likely outcomes,

\[
P(E|F) = \frac{|E \cap F|}{|F|} = \frac{|E \cap F|/|F|}{|F|/|\Omega|} = \frac{P(E \cap F)}{P(F)}
\]

Ex: Roll a fair die. What is P(5 | odd)?

From counting: P(E|F) = \(|E \cap F|/|F| \) = \(|5|/|\text{odd}| \) = \(1/3

From prob: P(E|F) = P(E \cap F)/P(F) = P(5)/P(\text{odd}) = \(1/6 \) \(1/3 \) = \(1/2 \)
Ex. Let I be all ways of dealing a Schafhaut hand, Y = you are dealt 0 trumps, and O = opponent is dealt 0 trumps.

$$P(O | Y) = \frac{10 \times Y | Y}{Y} = \frac{\binom{10}{5} \binom{4}{0}}{\binom{14}{5}} = \frac{20160}{20020} \approx 0.126$$

Compare to $P(O) \approx 0.258$

Ex. $P(0 \text{ off dealt } = 1 \text{ trump } | Y) = P(O | Y) = 1 - P(O | Y) \approx 0.87$

$$P(O | Y) \neq 1 - P(O | Y)$$