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1 Jointly Normal Random Variables 
 

For this section, we will treat a constant 𝑐 as a normal random variable with mean 𝑐 and variance 0, even 

though its pdf is undefined. Therefore, we will have 𝑎𝑋 + 𝑏 being normal if 𝑋 is normal, and even if 𝑎 =

0. 
 

Two random variables 𝑋 and 𝑌 are jointly normal if and only if they can be expressed in the form 
 

(𝑋, 𝑌) = (𝑎𝑈 + 𝑏𝑉, 𝑐𝑈 + 𝑑𝑉) 
 

where 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ and 𝑈 and 𝑉 are independent and normally distributed. 
 

If 𝑋 and 𝑌are jointly normal, then 𝑊 = 𝑠𝑋 + 𝑡𝑌 is also normally distributed.  
 

From Wikipedia, if 𝑋 and 𝑌 have some normal distribution, it does not imply that (𝑋, 𝑌) are jointly 

normal. As a counterexample, let 𝑋~𝑁(0,1) and 𝑌 = 𝑋 if |𝑋| > 𝑐 and 𝑌 = −𝑋 if |𝑋| ≤ 𝑐, for some 

𝑐 > 0. 
 

Theorem: For jointly normal random variables (𝑋, 𝑌), if 𝐶𝑜𝑣(𝑋, 𝑌) = 0 (or equivalently, 𝐶𝑜𝑟(𝑋, 𝑌) =

𝜌𝑋,𝑌 = 0), then 𝑋 ⊥ 𝑌. Note that we showed earlier, that if two random variables 𝑆, 𝑇 are independent, 

then 𝐶𝑜𝑣(𝑆, 𝑇) = 𝐶𝑜𝑟(𝑆, 𝑇) = 0. Therefore, this is a special case of the converse being true. 
 

2 The Multivariate Normal Distribution 
 

In the special case with two jointly normal random variables, where 𝑋~𝑁(𝜇𝑋, 𝜎𝑋
2) and 𝑌~𝑁(𝜇𝑌, 𝜎𝑌

2) and 

correlation 𝜌 ≡ 𝜌𝑋,𝑌 =
𝐶𝑜𝑣(𝑋,𝑌)

√𝑉𝑎𝑟(𝑋)𝑉𝑎𝑟(𝑌)
=

𝐶𝑜𝑣(𝑋,𝑌)

𝜎𝑋𝜎𝑌
, we define the joint probability density function of 𝑋 

and 𝑌 as 
 

𝑓𝑋,𝑌(𝑥, 𝑦) =
1

2𝜋𝜎𝑋𝜎𝑌√1 − 𝜌2
𝑒

−
1
2

𝑧
(1−𝜌2) 

 
where 
 

𝑧 =
(𝑥 − 𝜇𝑋)2

𝜎𝑋
2 −

2𝜌(𝑥 − 𝜇𝑋)(𝑦 − 𝜇𝑌)

𝜎𝑋𝜎𝑌
+

(𝑦 − 𝜇𝑌)2

𝜎𝑌
2  
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In the special case where 𝑋 ⊥ 𝑌 or equivalently 𝜌 = 0 from the earlier theorem, 
 

𝑓𝑋,𝑌(𝑥, 𝑦) = 𝑓𝑋(𝑥)𝑓𝑌(𝑦) =
1

𝜎𝑋√2𝜋
𝑒

−
1
2

(𝑥−𝜇𝑋)2

𝜎𝑋
2 1

𝜎𝑌√2𝜋
𝑒

−
1
2

(𝑦−𝜇𝑌)2

𝜎𝑌
2

, 𝑥, 𝑦 ∈ ℝ 

 

The mean vector 𝝁 is given by  
 

𝝁 = [
𝜇𝑋

𝜇𝑌
] 

 

The covariance matrix 𝚺 is given by 
 

Σ = [
𝜎𝑋

2 𝜌𝜎𝑋𝜎𝑌

𝜌𝜎𝑋𝜎𝑌 𝜎𝑌
2 ] 

 

In this case, we say that (𝑋, 𝑌) has the bivariate normal distribution with mean vector 𝝁 and 

covariance matrix 𝚺, and we write (𝑋, 𝑌)~𝑁2(𝝁, Σ). 
 
All the standard properties of joint distributions apply – including expectation, marginal and conditional 
distributions, etc. 
 

Now we extend our analysis to the general case: suppose (𝑋1, … . 𝑋𝑛) are jointly normally distributed 

random variables with mean vector 𝝁 ∈ ℝ𝑛 and covariance matrix Σ ∈ ℝ𝑛×𝑛, with Σ𝑖𝑗 = 𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗). 

Then, the joint density function of the random vector 𝑿 = (𝑋1, … , 𝑋𝑛) evaluated at a vector 𝒙 =

(𝑥1, … , 𝑥𝑛) ∈ ℝ𝑛 is given by 
 

𝑓𝑿(𝒙) =
1

√(2𝜋)𝑛|Σ|
𝑒−

1
2

(𝒙−𝝁)𝑇Σ−1(𝒙−𝝁)
 

 

In this case, we say (𝑋1, … , 𝑋𝑛) has the multivariate normal distribution with mean vector 𝝁 and 

covariance matrix 𝚺, and we write (𝑋1, … , 𝑋𝑛)~𝑁𝑛(𝝁, Σ). In the case where 𝑋1, … , 𝑋𝑛 are iid (or 
equivalently, pairwise uncorrelated), the covariance matrix is diagonal, and the joint density is the product 
of the individual densities. 
 
We often assume features in machine learning or random variables of interest that we measure are 
multivariate Gaussian (i.e., multivariate normal). Thus it is important to recognize and know basic 
properties of this distribution. The two most important multivariate distributions by far are the multivariate 
normal and multinomial distributions. 
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3 Bayesian Networks 
 
Bayesian networks comprise an important probabilistic model that is used to make inferences about a 
complex system for which we have statistical data. For example, they are used for  

 medical diagnosis 

 analyzing genetic expression data 

 predicting when/where crime or terrorism is likely to occur 

 protecting endangered species by modeling their environment 

 estimating risk (for example, what’s the probability you’ll get into an automobile accident) 

 information retrieval 

 forecasting the weather 

 interpreting legal evidence  

 etc… 
They are an incredibly powerful tool, and you will learn much more about them if you take courses such as 
CSE 473 (Artificial Intelligence). 
 

Notation alert: To save space, I sometimes abbreviate 𝑃(𝑋 = 𝑥) as 𝑝(𝑥). Similarly, I will abbreviate 

𝑃(𝑋 = 𝑥 ∩ 𝑌 = 𝑦) as 𝑝(𝑥, 𝑦). 

 
4 Modelling a joint distribution 
 
In most of the examples we’ve covered in class, we were analyzing the distribution of a single random 
variable (such as the outcome of a die roll, whether a person has a disease or not, etc.). However, most 
real-world situations involve more than one random variable. How do we handle this? 
 
If the random variables are discrete, we can start with the joint distribution, which assigns a probability 
to every possible combination of outcomes. For example, let’s say we’re modelling flu/allergy 
symptoms and we have five random variables: Flu, Allergy, Sinus, Headache, Nose. Each of these 
random variables is binary (true/false). The joint distribution could look something like this: 
 

𝑭𝒍𝒖 𝑨𝒍𝒍𝒆𝒓𝒈𝒚 𝑺𝒊𝒏𝒖𝒔 𝑯𝒆𝒂𝒅𝒂𝒄𝒉𝒆 𝑵𝒐𝒔𝒆 𝒑(𝒇, 𝒂, 𝒔, 𝒉, 𝒏) 
𝑇 𝑇 𝑇 𝑇 𝑇 0.01 
𝑇 𝑇 𝑇 𝑇 𝐹 0.03 
𝑇 𝑇 𝑇 𝐹 𝑇 0.0001 
𝑇 𝑇 𝑇 𝐹 𝐹 0.19 
𝑇 𝑇 𝐹 𝑇 𝑇 0.08 
… … … … … … 

 
Exercise: How many probabilities do we need to store? What do the probabilities in the right column need 
to sum to? 

Solution: There are 5 binary random variables (each with 2 possible outcomes), so there are 25 = 32 
possible combinations of outcomes. Since we’ve included every possible setting of each random variable, 
the probabilities must sum to 1. Since all the probabilities sum to 1, in practice we only need to store 31 
probabilities: the 32nd probability is found by subtracting all other probabilities from 1. 
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The number of probabilities is exponential in the number of random variables. If we have just 50 binary 

random variables, then we need 250 ≈ 1.12 ×1015 probabilities. We probably don’t have enough data to 
even guess these probabilities! It seems like we’re just completely screwed here. Even if we use the chain 
rule: 

𝑝(𝑓, 𝑎, 𝑠, ℎ, 𝑛) = 𝑝(𝑛|𝑓, 𝑎, 𝑠, ℎ)𝑝(𝑓, 𝑎, 𝑠, ℎ) 

                                             = 𝑝(𝑛|𝑓, 𝑎, 𝑠, ℎ)𝑝(ℎ|𝑓, 𝑎, 𝑠)𝑝(𝑓, 𝑎, 𝑠) 

                                                                           = 𝑝(𝑛|𝑓, 𝑎, 𝑠, ℎ)𝑝(ℎ|𝑓, 𝑎, 𝑠)𝑝(𝑓|𝑎, 𝑠)𝑝(𝑎|𝑠)𝑝(𝑠)     
 
We’re still stuck with complex probabilities (probability of something, GIVEN a ton of other variables). It 
would be nice if we could get rid of some of those variables in the conditions. If you recall, we faced the 
same problem in Naïve Bayes, and we addressed it with conditional independence! 
 

5 Conditional independence saves the day! 
 
Recall a definition of conditional independence: random variables X and Y are conditionally 
independent given Z if 

∀𝑥, 𝑦, 𝑧:  𝑝(𝑥|𝑧, 𝑦) = 𝑝(𝑥|𝑧) 
 
Consider a simple example: we have 3 binary random variables: 

 Rain (true iff it’s raining) 

 Traffic (true iff there is traffic) 

 Umbrella (true iff I am using my umbrella) 
 

Exercise: just using your intuition, are there conditional independences in this situation? Which variables? 
Solution: rain causes both traffic and umbrella usage, so the probability of each increases if we’re given 
that it is raining. However, Traffic and Umbrella are conditionally independent given Rain. 
Once we know that it’s raining or not raining, there is no relation between them: the correlation is purely 
caused by the fact that both are associated with rain. 
 
Now let’s use this to simplify the joint distribution. 

𝑝(𝑇𝑟𝑎𝑓𝑓𝑖𝑐, 𝑅𝑎𝑖𝑛, 𝑈𝑚𝑏𝑟𝑒𝑙𝑙𝑎) = 𝑝(𝑅𝑎𝑖𝑛)𝑝(𝑇𝑟𝑎𝑓𝑓𝑖𝑐|𝑅𝑎𝑖𝑛)𝑝(𝑈𝑚𝑏𝑟𝑒𝑙𝑙𝑎|𝑅𝑎𝑖𝑛, 𝑇𝑟𝑎𝑓𝑓𝑖𝑐) 

                                                              = 𝑝(𝑅𝑎𝑖𝑛)𝑝(𝑇𝑟𝑎𝑓𝑓𝑖𝑐|𝑅𝑎𝑖𝑛)𝑝(𝑈𝑚𝑏𝑟𝑒𝑙𝑙𝑎|𝑅𝑎𝑖𝑛)      
(The last line follows since Umbrella is conditionally independent of Traffic, given Rain.) 
 

6 Bayesian network semantics 
 
Bayesian networks are a “technique for describing complex joint distributions (models) using simple, local 
distributions (conditional probabilities)”. They consist of both a directed acyclic graph, and probability 
distributions for each node. 

 Nodes represent random variables (with domains). They can be assigned (observed) or unassigned 
(unobserved) 

 Arcs represent direct influence between variables. Intuitively, you can think of them as causation: 
an arrow pointing from variable A to B suggests that A directly influences B. Formally, they encode 
conditional independences as we’ll see later. 
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Exercise: draw the graph for a Bayesian network in the above example with Flu, Allergy, Sinus, Headache, 
Nose. Assume we know these facts from our prior knowledge: 

 The flu causes sinus inflammation 

 Allergies cause sinus inflammation 

 Sinus inflammation causes a runny nose 

 Sinus inflammation causes headaches 
Solution: 

 
 
This is the graph portion of a Bayes’ net. But in addition to this graph, which specifies the relationships 
among the random variables, we also have a conditional probability table for each random variable. This 
table stores the probability of the variable having each value given all possible configurations of the 
parents. For example, the table for “Sinus” would store the probability of “Sinus = true” given every 
combination of the parents’ values (in this case, Flu and Allergy). 
 
This seems nice – instead of conditioning on every other variable, we only need to condition on the 
variable’s parents. But can we recover the joint distribution from this? 

 
7 How the heck does this represent the joint distribution? Factoring! 
 
By definition, all Bayesian networks make the following conditional independence assumption: 
 
Local Markov Assumption: A variable X is independent of its non-descendants, given its 
parents. 
(In other words, if we know the values of X’s parents, the values of all other variables give us no additional 
information about the probability of X.) 
 
Theorem 1: If a Bayesian network satisfies the Local Markov Assumption, and the variables are sorted in 

topological order, then for each variable 𝑥𝑖: 

𝑝(𝑥𝑖|𝑥1, 𝑥2, … 𝑥𝑖−1) = 𝑝(𝑥𝑖|𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑥𝑖)) 
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Proof: We can split 𝑥1, 𝑥2, … 𝑥𝑖−1 into parents of 𝑥𝑖  and non-parents.  

𝑝(𝑥𝑖|𝑥1, 𝑥2, … 𝑥𝑖−1) = 𝑝(𝑥𝑖|𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑥𝑖), 𝑁𝑜𝑛𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑥𝑖)) 
 

Since the variables are sorted in topological order, none of the previous variables 𝑥1, 𝑥2, … 𝑥𝑖−1 are 

descendants of 𝑥𝑖. Now, we apply the Local Markov Assumption. 

𝑝(𝑥𝑖|𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑥𝑖), 𝑁𝑜𝑛𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑥𝑖)) = 𝑝(𝑥𝑖|𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑥𝑖)) 

 
Whoa! So using this conditional independence assumption, we can in fact get rid of a lot of the variables 
we’re conditioning on! Now, let’s simplify the joint distribution. 
 

Theorem 2: If a Bayesian network has variables 𝑥1, 𝑥2, … 𝑥𝑛 and the Local Markov Assumption is satisfied, 

𝑝(𝑥1, 𝑥2, … 𝑥𝑛) = ∏ 𝑝(𝑥𝑖|𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑥𝑖))

𝑛

𝑖=1

 

 

Proof:  If we start from the joint distribution again, by the chain rule we have: 

𝑝(𝑥1, 𝑥2, 𝑥3, … 𝑥𝑛) = 𝑝(𝑥1)𝑝(𝑥2|𝑥1). . . 𝑝(𝑥𝑛|𝑥1, … 𝑥𝑛−1) = ∏ 𝑝(𝑥𝑖|𝑥1, … 𝑥𝑖−1)

𝑛

𝑖=1

 

Using Theorem 1, this is equal to 

∏ 𝑝(𝑥𝑖|𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑥𝑖))

𝑛

𝑖=1

 

 
The Conditional Probability Tables in the Bayesian network store exactly this information (probability of a 
random variable given values for its parents)! Thus, we can get back any probability in the joint distribution! 
 
This is the key concept behind Bayesian networks – using conditional independences can 
simplify our representation a lot! (If you count, we can represent the 5-variable flu/allergy 
distribution with just 10 probabilities, instead of 31. It’s even more dramatic with more variables.) 
 

Exercise: for the following Bayes’ net, factor the joint distribution 𝑝(𝑓, 𝑎, 𝑠, 𝑛, ℎ) into probabilities that 
the Bayesian network stores. 

 
Solution:  
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𝑝(𝑓, 𝑎, 𝑠, 𝑛, ℎ)

= 𝑝(𝑓|𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝐹))𝑝(𝑎|𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝐴))𝑝(𝑠|𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑆))𝑝(𝑛|𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑛))𝑝(ℎ|𝑃𝑎𝑟𝑒𝑛𝑡𝑠(ℎ)) 

  = 𝑝(𝑓)𝑝(𝑎)𝑝(𝑠|𝑓, 𝑎)𝑝(𝑛|𝑠)𝑝(ℎ|𝑠)  

 
Exercise: Recall that in Naïve Bayes, we assume words 𝑥1, 𝑥2, … 𝑥𝑛 in an email are conditionally 
independent of each other, given that we know whether the email is spam (event S). Draw a Bayesian 
network that reflects this, and factor the joint distribution accordingly. (Naïve Bayes is a special example of 
a Bayesian network.) 
Solution: 

 

𝑝(𝑆, 𝑥1, 𝑥2, … 𝑥𝑛) = 𝑝(𝑆)𝑝(𝑥1|𝑆)𝑝(𝑥2|𝑆) … 𝑝(𝑥𝑛|𝑆) = 𝑝(𝑆) ∏ 𝑝(𝑋𝑖|𝑆)

𝑛

𝑖=1

 

(Whether the email is spam influences the probability of each word appearing, so there is an arrow from S 

to each word. Note that by the Local Markov Assumption, each 𝑥𝑖  is independent from its non-descendants 
(other words) given its parent (S), which is the exact conditional independence assumption Naïve Bayes 
uses.) 
 

8 Inference 
 
Great, now we can find the probability of any combination of values for the random variables! But what 
about more routine inference tasks? For example, let’s say we’re given that Nose is true. What is the 
probability of Flu taking on a particular value? 
 
Applying the definition of conditional probability: 

𝑃(𝐹 = 𝑥𝐹|𝑁 = 𝑡𝑟𝑢𝑒) =
𝑃(𝐹 = 𝑥𝐹 , 𝑁 = 𝑡𝑟𝑢𝑒)

𝑃(𝑁 = 𝑡𝑟𝑢𝑒)
 

 
For illustration let’s focus on the numerator. We sum over all possible values A, S, and H can take on. 

𝑃(𝐹 = 𝑥𝐹 , 𝑁 = 𝑡𝑟𝑢𝑒) = ∑ 𝑃(𝐹 = 𝑥𝐹 , 𝑁 = 𝑡𝑟𝑢𝑒, 𝐴 = 𝑥𝐴, 𝑆 = 𝑥𝑆, 𝐻 = 𝑥𝐻)

𝑥𝐴,𝑥𝑆,𝑥𝐻

 

 
Remember from above (Theorem 2): in a Bayesian network, the joint distribution can be factored into the 
probability of each variable given its parents. 
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∑ 𝑃(𝐹 = 𝑥𝐹)𝑃(𝐴 = 𝑥𝐴)𝑃(𝑆 = 𝑥𝑆|𝐹 = 𝑥𝐹 , 𝐴 = 𝑥𝐴)𝑃(𝐻 = 𝑥𝐻|𝑆 = 𝑥𝑆)𝑃(𝑁 = 𝑡𝑟𝑢𝑒|𝑆 = 𝑥𝑆)

𝑥𝐴,𝑥𝑆,𝑥𝐻

 

 

These terms are available in the Bayesian network’s Conditional Probability Tables. However, in the worst 
case, we need to sum over an exponential number of combinations of variable values.  
 
An optimization can be made: factor common terms out of the summations. 
 

𝑃(𝐹 = 𝑥𝐹) ∑ 𝑃(𝐴 = 𝑥𝐴) ∑ 𝑃(𝑆 = 𝑥𝑆|𝐹 = 𝑥𝐹 , 𝐴 = 𝑥𝐴)𝑃(𝑁 = 𝑡𝑟𝑢𝑒|𝑆 = 𝑥𝑆) ∑ 𝑃(𝐻 = 𝑥𝐻|𝑆 = 𝑥𝑆)

𝑥𝐻𝑋𝑆𝑋𝐴

 

 

This is an example of an approach called variable elimination. There are other more sophisticated 
methods for inference (such as junction trees), but unfortunately, all are still exponential time in terms of 
the number of variables (in general). For complex Bayesian networks, we can instead perform approximate 
inference using sampling-based methods, where we generate a bunch of samples according to the 
Bayesian network probabilities, and then count the fraction of them that satisfy our criteria. This won’t give 
us the exact probabilities, but it’s sometimes the only way to estimate anything in a reasonable amount of 
time. This is an active area of research in Computer Science and Statistics: people are exploring ways to 
make probabilistic inference on Bayesian networks more efficient. 
 

For more info on Bayesian networks, check out these slides: 
http://courses.cs.washington.edu/courses/cse473/16sp/slides/cse473sp16-BayesNets.pdf  
https://courses.cs.washington.edu/courses/cse446/17wi/slides/bayesnets-annotated.pdf 

 

http://courses.cs.washington.edu/courses/cse473/16sp/slides/cse473sp16-BayesNets.pdf
https://courses.cs.washington.edu/courses/cse446/17wi/slides/bayesnets-annotated.pdf

