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1 The Gamma Function 
 
We define the gamma function,  
 

Γ(𝑡) = ∫ 𝑥𝑡−1𝑒−𝑥𝑑𝑥
∞

0

 

 

Exercise: Show that Γ(𝑟) = (𝑟 − 1)Γ(𝑟 − 1). (Hint: Use integration by parts). 
Solution: We use integration by parts with the following substitution to get 
 

𝑢 = 𝑥𝑟−1, 𝑑𝑢 = (𝑟 − 1)𝑥𝑟−2𝑑𝑥, 𝑣 = −𝑒−𝑥, 𝑑𝑣 = 𝑒−𝑥𝑑𝑥 

Γ(𝑟) = ∫ 𝑥𝑟−1𝑒−𝑥𝑑𝑥
∞

0

= −[𝑥𝑟−1𝑒−𝑥]0
∞ + (𝑟 − 1) ∫ 𝑥𝑟−2𝑒−𝑥𝑑𝑥

∞

0

= (𝑟 − 1)Γ(𝑟 − 1) 

 

Exercise: Find Γ(1). 
Solution: 

Γ(1) = ∫ 𝑒−𝑥𝑑𝑥
∞

0

= 1 

 

Exercise: Let 𝑛 ∈ ℕ be a positive integer. Use the previous two exercises to conclude that Γ(𝑛) =
(𝑛 − 1)!. 

Solution: We use induction. The base case was the previous exercise. Suppose Γ(𝑛 − 1) = (𝑛 − 2)! for 

some 𝑛 ∈ ℕ. Then, by the first exercise and the induction hypothesis, Γ(𝑛) = (𝑛 − 1)Γ(𝑛 − 1) =
(𝑛 − 1)(𝑛 − 2)! = (𝑛 − 1)!. So the gamma function attempts to fit a curve to extend factorial to all real 
numbers! 
 

2 The Gamma Distribution 
 

The Poisson Process with parameter 𝝀 is a stochastic process over an (uncountably) infinite interval of 

time, namely [0, ∞) such that successes/events occur at an average rate of 𝜆 per unit time. The Poisson 

distribution with parameter 𝝀 measures the number of successes in a unit of time, and we say 

𝑋~𝑃𝑜𝑖(𝜆). Recall that the Poisson distribution stems from the Binomial, when we let 𝑛 → ∞, 𝑝 → 0 in 

such a way that 𝑛𝑝 → 𝜆. Now, we describe the Exponential distribution with parameter 𝝀 as the 

waiting time until the first event. Notice that if 𝑿~𝑬𝒙𝒑(𝝀), then Ω𝑋 = [0, ∞), and 𝐹𝑋(𝑥) = 1 − 𝑒−𝜆𝑥. 
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Why is this? Let 𝑌𝑥 be the number of successes in the first 𝑥 units of time of the Poisson process with 

parameter 𝜆. Since 𝜆 is the rate per single unit of time, 𝜆𝑥 is the rate parameter for 𝑌𝑥.  So 𝑌𝑥~𝑃𝑜𝑖(𝜆𝑥). 
 

𝑃(𝑋 > 𝑥) = 𝑃(𝑛𝑜 𝑒𝑣𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑥 𝑢𝑛𝑖𝑡𝑠 𝑜𝑓 𝑡𝑖𝑚𝑒) = 𝑃(𝑌𝑥 = 0) = 𝑒−𝜆𝑥
(𝜆𝑥)0

0!
= 𝑒−𝜆𝑥 

𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥) = 1 − 𝑃(𝑋 > 𝑥) = 1 − 𝑒−𝜆𝑥 
 

We can differentiate the cdf to get its pdf as 𝑓𝑋(𝑥) = 𝜆𝑒−𝜆𝑥. Just like the geometric distribution, the 
exponential distribution represents the waiting time until the first success, so it is the continuous analog of 

the geometric distribution. More similarities: both are memoryless, that is 𝑃(𝑋 > 𝑠 + 𝑡|𝑋 > 𝑡) =

𝑃(𝑋 > 𝑠), so if you’ve waited at least 𝑡 units of time, the probability you wait 𝑠 more is the same as the 

probability you wait at least 𝑠 units from the beginning. Furthermore, the expectation of 𝐺𝑒𝑜(𝑝) is 
1

𝑝
 and 

the expectation of 𝐸𝑥𝑝(𝜆) is 
1

𝜆
.  

 

So what is the continuous analog of the negative binomial distribution? If 𝑋1, … , 𝑋𝑟 are iid 𝐸𝑥𝑝(𝜆), their 

sum 𝑋 = 𝑋1 + ⋯ + 𝑋𝑟 is the waiting time until the 𝑟𝑡ℎ event, and we say that 𝑋 has the gamma 

distribution with parameters 𝒓 and 𝝀, that is, 𝑿~𝑮𝒂𝒎(𝒓, 𝝀). We call 𝑟 the shape parameter and 

𝜆 the rate parameter. 
 

Exercise: Find the expectation of 𝑋 and variance of 𝑋, if 𝑋~𝐺𝑎𝑚(𝑟, 𝜆). 

Solution: Recall for 𝑊~𝐸𝑥𝑝(𝜆), we have 𝐸[𝑊] =
1

𝜆
 and 𝑉𝑎𝑟(𝑊) =

1

𝜆2. Since 𝑋 = 𝑋1 + ⋯ + 𝑋𝑟, 

where 𝑋𝑖~𝐸𝑥𝑝(𝜆), we use linearity of expectation to get  
 

𝐸[𝑋] = 𝐸 [∑ 𝑋𝑖

𝑟

𝑖=1

] = ∑ 𝐸[𝑋𝑖]

𝑟

𝑖=1

= ∑
1

𝜆

𝑟

𝑖=1

=
𝑟

𝜆
 

 
Since we have independence, we can use linearity of variance to get  
 

𝑉𝑎𝑟(𝑋) = 𝑉𝑎𝑟 (∑ 𝑋𝑖

𝑟

𝑖=1

) = ∑ 𝑉𝑎𝑟(𝑋𝑖)

𝑟

𝑖=1

= ∑
1

𝜆2

𝑟

𝑖=1

=
𝑟

𝜆2
 

 

The probability density function of 𝑋 is given by 
 

𝑓𝑋(𝑥) =
𝜆𝑟

Γ(𝑟)
𝑥𝑟−1𝑒−𝜆𝑥, 𝑥 > 0 

 
But we will not attempt to derive or explain the density. The gamma function is used to ensure the density 

integrates to 1. We will see this distribution later when we talk about parameter estimation, but for now, it 
is still useful to know about! 
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3 Moment Generating Functions 
 

Let 𝑋 be a random variable. We define the 𝒌𝒕𝒉 moment of 𝑿 about 𝒄 as 𝐸[(𝑋 − 𝑐)𝑘]. If we don’t say 

“about 𝑐”, we assume 𝑐 = 0. So for example, the first moment is 𝐸[𝑋] = 𝜇 and the second moment about 

𝜇 is the variance: 𝐸[(𝑋 − 𝜇)2]. We define the moment generating function (mgf/MGF) of 𝑿, as 

𝑀𝑋(𝑡) = 𝐸[𝑒𝑡𝑋]. It allows us to find moments easily, and uniquely defines a distribution.  
 

If 𝑋 is discrete,  
 

𝑀𝑋(𝑡) = 𝐸[𝑒𝑡𝑋] = ∑ 𝑒𝑡𝑥𝑝𝑋(𝑥)

𝑥

 

If 𝑋 is continuous,  
 

𝑀𝑋(𝑡) = 𝐸[𝑒𝑡𝑋] = ∫ 𝑒𝑡𝑥𝑓𝑋(𝑥)𝑑𝑥
∞

∞

 

 
Here are some properties: 

1. 𝑀𝑋
′ (0) = 𝐸[𝑋], 𝑀𝑋

′′(0) = 𝐸[𝑋2], and in general, 𝑀𝑋
(𝑛)(0) = 𝐸[𝑋𝑛], where 𝑀𝑋

(𝑛)
(𝑡) is the 

𝑛𝑡ℎ derivative of 𝑀𝑋(𝑡). 

2. If 𝑋 ⊥ 𝑌, then 𝑀𝑋+𝑌(𝑡) = 𝑀𝑋(𝑡)𝑀𝑌(𝑡). 

3. For 𝑎, 𝑏 ∈ ℝ, 𝑀𝑎𝑋+𝑏(𝑡) = 𝑒𝑏𝑡𝑀𝑋(𝑎𝑡). 

4. (Uniqueness) 𝑓𝑋(𝑠) = 𝑓𝑌(𝑠) for all 𝑠 ∈ ℝ if and only if 𝑀𝑋(𝑡) = 𝑀𝑌(𝑡) for all 𝑡 in some 𝜖-

neighborhood of 0. (i.e. the MGF uniquely determines a distribution, just like the pdf/pmf and 
cdf).  

 

Exercise: Prove property 1, assuming 𝑋 is discrete. (The same proof applies for continuous rv’s). 
Solution:  

𝑀𝑋
′ (𝑡) =

𝑑

𝑑𝑡
∑ 𝑒𝑡𝑥𝑝𝑋(𝑥)

𝑥

= ∑
𝑑

𝑑𝑡
(𝑒𝑡𝑥)𝑝𝑋(𝑥)

𝑥

= ∑ 𝑥𝑒𝑡𝑥𝑝𝑋(𝑥)

𝑥

 

𝑀𝑋
′ (0) = ∑ 𝑥𝑝𝑋(𝑥)

𝑥

= 𝐸[𝑋] 

𝑀𝑋
′′(𝑡) =

𝑑2

𝑑𝑡2
∑ 𝑒𝑡𝑥𝑝𝑋(𝑥)

𝑥

= ∑
𝑑2

𝑑𝑡2
(𝑒𝑡𝑥)𝑝𝑋(𝑥)

𝑥

= ∑ 𝑥2𝑒𝑡𝑥𝑝𝑋(𝑥)

𝑥

 

𝑀𝑋
′′(0) = ∑ 𝑥2𝑝𝑋(𝑥)

𝑥

= 𝐸[𝑋2] 

 

This can easily be extended by induction to 𝑀𝑋
(𝑛)(0) = 𝐸[𝑋𝑛]. 

 

Exercise: Prove properties 2 and 3, assuming 𝑋, 𝑌 are discrete. (The same proof applies for continuous 

rv’s). You may use the fact that, if 𝑋 and 𝑌 are independent, so are 𝑔(𝑋) and ℎ(𝑌) for any arbitrary 

functions 𝑔 and ℎ. 
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Solution:  
 

𝑀𝑋+𝑌(𝑡) = 𝐸[𝑒𝑡(𝑋+𝑌)] = 𝐸[𝑒𝑡𝑋𝑒𝑡𝑌] = 𝐸[𝑒𝑡𝑋]𝐸[𝑒𝑡𝑌] = 𝑀𝑋(𝑡)𝑀𝑌(𝑡) 
 
where we require independence for the third equality. 
 

𝑀𝑎𝑋+𝑏(𝑡) = 𝐸[𝑒𝑡(𝑎𝑋+𝑏)] = 𝐸[𝑒𝑎𝑡𝑋𝑒𝑡𝑏] = 𝑒𝑡𝑏𝐸[𝑒(𝑎𝑡)𝑋] = 𝑒𝑏𝑡𝑀𝑋(𝑎𝑡) 
 

Exercise: Find the moment generating function of 𝑋 if 𝑋~𝐸𝑥𝑝(𝜆), and use it to verify 𝐸[𝑋] =
1

𝜆
. 

Solution: 
 

𝑀𝑋(𝑡) = 𝐸[𝑒𝑡𝑋] = ∫ 𝑒𝑡𝑥𝜆𝑒−𝜆𝑥𝑑𝑥
∞

0

= 𝜆 ∫ 𝑒(𝑡−𝜆)𝑥𝑑𝑥
∞

0

=
𝜆

𝑡 − 𝜆
[𝑒(𝑡−𝜆)𝑥]

0

∞
=

𝜆

𝜆 − 𝑡
 

 

For the last equality, we needed to suppose 𝑡 < 𝜆 in order for the integral to converge, but it’s okay 

because we only need 𝑀𝑋 defined on a small neighborhood of 0.  
 

𝑀𝑋
′ (𝑡) =

𝑑

𝑑𝑡
(

𝜆

𝜆 − 𝑡
) =

𝜆

(𝜆 − 𝑡)2
 

𝐸[𝑋] = 𝑀𝑋
′ (0) =

𝜆

𝜆2
=

1

𝜆
 

 
So moment generating functions are super useful and a nice way to find moments! It may not have been 
worth it in this case, but sometimes these are helpful. Again, also mgf’s uniquely define a distribution as 
much as the pdf/pmf and cdf. 
 

4 Order Statistics 
 

Suppose 𝑌1, … , 𝑌𝑛 are iid continuous random variables with common pdf 𝑓𝑌 and common cdf 𝐹𝑌. We sort 

the 𝑌𝑖’s such that 
 

𝑌𝑚𝑖𝑛 ≡ 𝑌(1) < 𝑌(2) < ⋯ < 𝑌(𝑛) ≡ 𝑌𝑚𝑎𝑥 

 
Notice we can’t have equality because with continuous random variables, the probability that any two are 

equal is identically 0. Notice that each 𝑌(𝑖) is random variable as well!  We call 𝑌(𝑖) the 𝒊𝒕𝒉 order 

statistic: the 𝑖𝑡ℎ smallest in a sample of size 𝑛. So we are interested in finding the distribution of each 
order statistic, and properties such as expectation and variance as well. 
 

We start with an example to find the distribution of 𝑌𝑚𝑎𝑥, the largest order statistic. We start with the cdf: 
 

𝐹𝑌𝑚𝑎𝑥
(𝑦) = 𝑃(𝑌𝑚𝑎𝑥 ≤ 𝑦) = 𝑃 (⋂ 𝑌𝑖 ≤ 𝑦 

𝑛

𝑖=1

) = ∏ 𝑃(𝑌𝑖 ≤ 𝑦)

𝑛

𝑖=1

= ∏ 𝐹𝑌(𝑦)

𝑛

𝑖=1

= 𝐹𝑌
𝑛(𝑦) 
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where the first equality is by definition, the second is because the maximum is ≤ 𝑦 if and only if all 𝑌𝑖’s are 

≤ 𝑦, the third is because of independence, and the rest are definitions. 
 
Then, we can differentiate the cdf to find the density function: 
 

𝑓𝑌𝑚𝑎𝑥
(𝑦) = 𝐹𝑌𝑚𝑎𝑥

′ (𝑦) =
𝑑

𝑑𝑦
(𝐹𝑦

𝑛(𝑦)) = 𝑛𝐹𝑌
𝑛−1(𝑦)𝑓𝑌(𝑦) 

 

We use a very informal argument to find the density of a general 𝑌(𝑖), 𝑓𝑌(𝑖)
(𝑦). One of the values needs to 

be exactly 𝑦, 𝑖 − 1 need to be smaller than 𝑦 (with probability 𝐹𝑌(𝑦)), and the other 𝑛 − 𝑖 need to be 

greater than 𝑦 (with probability 1 − 𝐹𝑌(𝑦)). Notice also that there are 3 distinct types of objects: 1 that is 

exactly 𝑦, 𝑖 − 1 which are less than 𝑦, and 𝑛 − 𝑖 which are greater. So we multiply by the multinomial 

coefficient ( 𝑛
𝑖−1,1,𝑛−𝑖

) to get  

 

𝑓𝑌(𝑖)
(𝑦) = (

𝑛

𝑖 − 1,1, 𝑛 − 𝑖
) [𝐹𝑌(𝑦)]𝑖−1[1 − 𝐹𝑌(𝑦)]𝑛−𝑖𝑓𝑌(𝑦) 

 
Let’s verify the result we got earlier: 
 

𝑓𝑌𝑚𝑎𝑥
(𝑦) = 𝑓𝑌(𝑛)

(𝑦) = (
𝑛

𝑛 − 1,1,0
) [𝐹𝑌(𝑦)]𝑛−1[1 − 𝐹𝑌(𝑦)]0𝑓𝑌(𝑦) = 𝑛𝐹𝑌

𝑛−1(𝑦)𝑓𝑌(𝑦) 

 
 

5 Jointly Distributed Continuous Random Variables 
 
We define things very similarly for continuous random variables, when we extend to the multivariate case. 

Suppose 𝑋 and 𝑌 are continuous random variables. We call the joint probability density function 

(joint pdf) of 𝑿 and 𝒀 𝑓𝑋,𝑌(𝑥, 𝑦). Notice that we use an 𝑓 instead of 𝑝 – we reserve 𝑓 for density 

function and 𝑝 for mass functions. We say that 𝑋 and 𝑌 are independent if and only if 𝑓𝑋,𝑌(𝑥, 𝑦) =

𝑓𝑋(𝑥)𝑓𝑌(𝑦) for all 𝑥, 𝑦. The marginal density (similar to the marginal pmf) is defined as  
 

𝑓𝑋(𝑥) = ∫ 𝑓𝑋,𝑌(𝑥, 𝑦)𝑑𝑦
∞

−∞

 

 
The joint cumulative distribution function (joint cdf) is given by  
 

𝐹𝑋,𝑌(𝑥, 𝑦) = 𝑃(𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦) = ∫ ∫ 𝑓𝑋,𝑌(𝑡, 𝑠)𝑑𝑠𝑑𝑡
𝑦

−∞

𝑥

−∞

 

 
Similarly to the univariate case, we have 
 

𝜕2

𝜕𝑥𝜕𝑦
𝐹𝑋,𝑌(𝑥, 𝑦) = 𝑓𝑋,𝑌(𝑥, 𝑦) 
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We summarize the transition from jointly discrete random variables to jointly continuous. 
 
Multivariate: Discrete to Continuous: 
 

 Discrete Continuous 

Joint PMF/PDF 𝑝𝑋,𝑌(𝑥, 𝑦) = 𝑃(𝑋 = 𝑥, 𝑌 = 𝑦) 𝑓𝑋,𝑌(𝑥, 𝑦) ≠ 𝑃(𝑋 = 𝑥, 𝑌 = 𝑦) 

Joint CDF 𝐹𝑋,𝑌(𝑥, 𝑦) = ∑ ∑ 𝑝𝑋,𝑌(𝑡, 𝑠)

𝑠≤𝑦𝑡≤𝑥

 𝐹𝑋,𝑌(𝑥, 𝑦) = ∫ ∫ 𝑓𝑋,𝑌(𝑡, 𝑠)𝑑𝑠𝑑𝑡
𝑦

−∞

𝑥

−∞

 

Normalization ∑ ∑ 𝑝𝑋,𝑌(𝑥, 𝑦)

𝑦𝑥

= 1 ∫ ∫ 𝑓𝑋,𝑌(𝑥, 𝑦)𝑑𝑥𝑑𝑦
∞

−∞

∞

−∞

= 1 

Marginal 
PMF/PDF 

𝑝𝑋(𝑥) = ∑ 𝑝𝑋,𝑌(𝑥, 𝑦)

𝑦

 𝑓𝑋(𝑥) = ∫ 𝑓𝑋,𝑌(𝑥, 𝑦)𝑑𝑦
∞

−∞

 

Expectation 𝐸[𝑔(𝑋, 𝑌)] = ∑ ∑ 𝑔(𝑥, 𝑦)𝑝𝑋,𝑌(𝑥, 𝑦)

𝑦𝑥

 𝐸[𝑔(𝑋, 𝑌)] = ∫ ∫ 𝑔(𝑥, 𝑦)𝑓𝑋,𝑌(𝑥, 𝑦)𝑑𝑥𝑑𝑦
∞

−∞

∞

−∞

 

Conditional 
PMF/PDF 

𝑝𝑋 | 𝑌(𝑥 | 𝑦) =
𝑝𝑋,𝑌(𝑥, 𝑦)

𝑝𝑌(𝑦)
 𝑓𝑋 | 𝑌(𝑥 | 𝑦) =

𝑓𝑋,𝑌(𝑥, 𝑦)

𝑓𝑌(𝑦)
 

Conditional 
Expectation 

𝐸[𝑋 | 𝑌 = 𝑦] = ∑ 𝑥𝑝𝑋 | 𝑌(𝑥 | 𝑦)

𝑥

 𝐸[𝑋 | 𝑌 = 𝑦] =  ∫ 𝑥𝑓𝑋 | 𝑌(𝑥 | 𝑦)𝑑𝑥
∞

−∞

 

Independence ∀𝑥, 𝑦, 𝑝𝑋,𝑌(𝑥, 𝑦) = 𝑝𝑋(𝑥)𝑝𝑌(𝑦) ∀𝑥, 𝑦, 𝑓𝑋,𝑌(𝑥, 𝑦) = 𝑓𝑋(𝑥)𝑓𝑌(𝑦) 

 

1. Suppose 𝑋 and 𝑌 are continuous random variables with joint density 
 

𝑓𝑋,𝑌(𝑥, 𝑦) = {
𝑐𝑥𝑦2, 𝑥 > 0, 𝑦 > 0, 𝑥 + 𝑦 < 1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

a) Write an equation which we can solve to find the value of 𝑐. 
 

∫ ∫ 𝑐𝑥𝑦2𝑑𝑦𝑑𝑥
1−𝑥

0

1

0

= 1 

 

b) Write an expression which we can solve to find 𝑃(𝑌 ≥ 𝑋). 
 

𝑃(𝑌 ≥ 𝑋) = ∫ ∫ 𝑐𝑥𝑦2𝑑𝑦𝑑𝑥
1−𝑥

𝑥

1/2

0

 

c) Write an expression to find the marginal pdf, 𝑓𝑋(𝑥).  Specify its value for all 𝑥 ∈ ℝ. 
 

𝑓𝑋(𝑥) = ∫ 𝑐𝑥𝑦2𝑑𝑦
1−𝑥

0

, 𝑓𝑜𝑟 0 < 𝑥 < 1 

 

d) Write an expression to find the joint CDF, 𝐹𝑋,𝑌(𝑠, 𝑡).  Specify its value for all 𝑠, 𝑡 ∈ ℝ. 
 

𝐹𝑋,𝑌(𝑠, 𝑡) = ∫ ∫ 𝑐𝑥𝑦2𝑑𝑥𝑑𝑦
𝑠

0

𝑡

0

, 𝑤ℎ𝑒𝑟𝑒 𝑠, 𝑡 > 0, 𝑠 + 𝑡 < 1 

 

e) Are 𝑋 and 𝑌 independent? 
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No, they aren’t defined over a rectangle. 
 

f) Find an expression for 𝐸[sin(𝑋𝑌)]. 
 

𝐸[sin 𝑋𝑌] = ∫ ∫ sin(𝑥𝑦) 𝑐𝑥𝑦2𝑑𝑦𝑑𝑥
1−𝑥

0

1

0

 

 

g) Suppose 𝑉, 𝑊, 𝑋, 𝑌, 𝑍 are jointly continuous with pdf 𝑓𝑉,𝑊,𝑋,𝑌,𝑍(𝑣, 𝑤, 𝑥, 𝑦, 𝑧).  Write an expression for the 

marginal joint density, 𝑓𝑉,𝑋,𝑍(𝑣, 𝑥, 𝑧). 
 

𝑓𝑉,𝑋,𝑍(𝑣, 𝑥, 𝑧) = ∫ ∫ 𝑓𝑉,𝑊,𝑋,𝑌,𝑍(𝑣, 𝑤, 𝑥, 𝑦, 𝑧)𝑑𝑤𝑑𝑦
∞

−∞

∞

−∞

 

 

2. Let (𝑋, 𝑌) have joint range Ω𝑋,𝑌 = {(𝑥, 𝑦): 𝑥2 + 𝑦2 ≤ 1}, the unit disk in ℝ2.  Find 𝑓𝑋,𝑌(𝑥, 𝑦) if 𝑋 and 𝑌 are 

uniformly distributed on Ω𝑋,𝑌.  Are 𝑋 and 𝑌 independent?  If so, prove it.  If not, does there exist any 𝑓𝑋,𝑌(𝑥, 𝑦) on 

Ω𝑋,𝑌 such that 𝑋 and 𝑌 are independent?   

𝑓𝑋,𝑌(𝑥, 𝑦) =
1

𝜋
, 𝑥2 + 𝑦2 ≤ 1 

No they aren’t independent and there does not exist any 𝑓𝑋,𝑌(𝑥, 𝑦) on Ω𝑋,𝑌 such that 𝑋 and 𝑌 are 

independent.  This is because Ω𝑋,𝑌 isn’t a rectangle, which means it cannot be the Cartesian product of any 
ranges (and therefore the marginal ranges aren’t independent). 
 

6 Transformations of Random Variables 

 

Suppose we had a random variable 𝑋 and we knew its properties such as its cdf and pdf. Then, if we apply 

𝑌 = 𝑔(𝑋), we would be interested in its distribution as well. We will show how to derive the distribution 

of 𝑌 if it is a function of 𝑋, and we will suppose they are both continuous. 
 

Suppose 𝑋~𝑈𝑛𝑖𝑓(0,1). Find the distribution of 𝑌 = − ln 𝑋. The general technique is to start with the 
cumulative distribution function. 
 

We know that, for 𝑥 ∈ [0,1], 𝐹𝑋(𝑥) = 𝑥 and so 𝑃(𝑋 ≥ 𝑥) = 1 − 𝐹𝑋(𝑥) = 1 − 𝑥. 
 

𝐹𝑌(𝑦) = 𝑃(𝑌 ≤ 𝑦) = 𝑃(− ln 𝑋 ≤ 𝑦) = 𝑃(ln 𝑋 ≥ −𝑦) = 𝑃(𝑋 ≥ 𝑒−𝑦) = 1 − 𝑒−𝑦 
 

where the first equality is by definition of cdf, the second is by definition of 𝑌, the third and fourth are 

algebra, and the last is by the fact about the uniform cdf, provided 𝑒−𝑦 ∈ [0,1], or equivalently, 𝑦 ∈

[0, ∞).  
 
Now we can differentiate to get the density, 
 

𝑓𝑌(𝑦) = 𝐹𝑌
′ (𝑦) = 𝑒−𝑦, 𝑦 ∈ [0, ∞) 

 

It turns out that 𝑌~𝐸𝑥𝑝(1)! You can apply this technique in the more general case as well! 
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7 Conditional Expectation, Law of Total Expectation 

 

Suppose 𝑋 and 𝑌 are jointly distributed, and we’ll suppose here that they are discrete random variables, but 

this applies in the more general case as well. We’ll define the conditional expectation of 𝑿 given 𝒀 =

𝒚 as 
 

𝐸[𝑋|𝑌 = 𝑦] = ∑ 𝑥𝑝𝑋|𝑌(𝑥|𝑦)

𝑥

 

 

We will do an example to illustrate. Suppose we have two fair four-sided dice, and let 𝑋 be the value on 

the first, and 𝑌 the value on the second. Let 𝑆 = max {𝑋, 𝑌}, 𝑇 = min {𝑋, 𝑌}. What is the conditional 

expectation of 𝑆|𝑇 = 𝑡? 
 
We start with the joint pmf from last time: 

𝑝𝑆,𝑇(𝑠, 𝑡) 

𝑠\𝑡 1 2 3 4 

1 1/16 0 0 0 

2 2/16 1/16 0 0 

3 2/16 2/16 1/16 0 

4 2/16 2/16 2/16 1/16 
 

Let us find the conditional pmf of 𝑆|𝑇. All we have to do is normalize so the columns sum to 1. 
 

𝑝𝑆|𝑇(𝑠|𝑡) 

𝑠\𝑡 1 2 3 4 

1 1/7 0 0 0 

2 2/7 1/5 0 0 

3 2/7 2/5 1/3 0 

4 2/7 2/5 2/3 1 
 
So now, to find 
 

𝐸[𝑆|𝑇 = 4] = ∑ 𝑠𝑝𝑆|𝑇(𝑠|4)

𝑠

= 1 ∙ 0 + 2 ∙ 0 + 3 ∙ 0 + 4 ∙ 1 = 4 

 

This is completely expected! If the minimum value was 4, the maximum has no choice but to take on the 

value of 4. 
 

𝐸[𝑆|𝑇 = 1] = ∑ 𝑠𝑝𝑆|𝑇(𝑠|1)

𝑠

= 1 ∙
1

7
+ 2 ∙

2

7
+ 3 ∙

2

7
+ 4 ∙

2

7
=

19

7
≈  2.714 

 

One can easily calculate 𝐸[𝑆] = 3.125.  Notice that 𝐸[𝑆] = 3.125 > 2.714 = 𝐸[𝑆|𝑇 = 1]. Why does 
this make sense? 
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Now that we know what conditional expectation is, we have a very natural extension from the law of total 
probability called the law of total expectation. This says that 
 

𝐸[𝑋] = ∑ 𝐸[𝑋|𝑌 = 𝑦]𝑃(𝑌 = 𝑦)

𝑦

= ∑ 𝐸[𝑋|𝑌 = 𝑦]𝑝𝑌(𝑦)

𝑦

 

 
Proof: 
 

∑ 𝐸[𝑋|𝑌 = 𝑦]𝑃(𝑌 = 𝑦)

𝑦

= ∑ ∑ 𝑥𝑝𝑋|𝑌(𝑥|𝑦)𝑝𝑌(𝑦)

𝑥𝑦

= ∑ 𝑥 ∑ 𝑝𝑋,𝑌(𝑥, 𝑦)

𝑦𝑥

 

= ∑ 𝑥𝑝𝑋(𝑥)

𝑥

= 𝐸[𝑋] 

 
where the first equality is by definition of conditional expectation, the second is by definition of conditional 

probability, the third is by definition of marginal distribution, and the fourth is by definition of 𝐸[𝑋]. 
 

Q.E.D. 


