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0 Introduction 
 
Being able to do analysis with a single random variable is great, but we often need to consider multiple! In 
particular, machine learning and artificial intelligence often require us to represent joint distributions over 
features, and we will learn some of the tools needed to do more advanced probabilistic analysis. 

 
1 The Negative Binomial Distribution 
 

Consider the following problem: we flip a coin with 𝑃(ℎ𝑒𝑎𝑑) = 𝑝 independently until we get our first 

success. Let 𝑋 be the number of flips up to and including the first head. We know that 𝑋~𝐺𝑒𝑜(𝑝) and 

therefore 𝐸[𝑋] =
1

𝑝
. Recall the pmf for the geometric rv is 

 

𝑝𝑋(𝑘) = 𝑃(𝑋 = 𝑘) = (1 − 𝑝)𝑘−1𝑝,   𝑘 = 1,2, … 
 

This is because the first 𝑘 − 1 flips must’ve been tails and the last flip must have been heads.  
 

Now let 𝑌 be the number of flips up to and including the 𝑟𝑡ℎ head. What is the probability mass function 

for 𝑌, 𝑝𝑌(𝑘)? 
 

𝑝𝑌(𝑘) = (
𝑘 − 1

𝑟 − 1
) 𝑝𝑟(1 − 𝑝)𝑘−𝑟 ,   𝑘 = 𝑟, 𝑟 + 1, … 

 

This is because the last flip must be a head. But out of the first 𝑘 − 1 flips, we choose 𝑟 − 1 positions for 

the other heads, and we have 𝑟 heads total and 𝑘 − 𝑟 tails total. We say that 𝑌 has a negative binomial 

distribution with parameters 𝒓 and 𝒑, and write that 𝒀~𝑵𝒆𝒈𝑩𝒊𝒏(𝒓, 𝒑). 
 

Exercise: What is 𝐸[𝑌], where 𝑌~𝑁𝑒𝑔𝐵𝑖𝑛(𝑟, 𝑝)? (Hint: Use Linearity of Expectation). 

Solution: Let 𝑋1, … , 𝑋𝑟~𝐺𝑒𝑜(𝑝) be independent and identically distributed (iid) random 

variables. Then, 𝑌 = 𝑋1 + ⋯ + 𝑋𝑟 = ∑ 𝑋𝑖
𝑟
𝑖=1  (Why?). 

 

𝐸[𝑌] = 𝐸 [∑ 𝑋𝑖

𝑟

𝑖=1

] = ∑ 𝐸[𝑋𝑖]

𝑟

𝑖=1

= ∑
1

𝑝

𝑟

𝑖=1

=
𝑟

𝑝
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2 Jointly Distributed Random Variables 
 

Let 𝑋 and 𝑌 be random variables. We define the joint distribution (joint probability mass 

function) of 𝑿 and 𝒀 as 𝑝𝑋,𝑌(𝑥, 𝑦) = 𝑃(𝑋 = 𝑥, 𝑌 = 𝑦). Let Ω𝑋,𝑌 denote the joint range/support 

of 𝑿 and 𝒀, that is, Ω𝑋,𝑌 = {(𝑥, 𝑦)|𝑝𝑋,𝑌(𝑥, 𝑦) > 0}. Because these are probabilities, we have the 
natural requirement that  

∑ ∑ 𝑝𝑋,𝑌(𝑥, 𝑦)

𝑦𝑥

= 1 

 

We will learn more through examples. Suppose we roll a fair four-sided die independently twice, and let 𝑋 

be the value on the first roll, and 𝑌 be the value on the second roll. 
 

Exercise: Specify Ω𝑋,𝑌 and find 𝑝𝑋,𝑌(𝑥, 𝑦). 

Solution: Let [𝑛] = {1,2, … , 𝑛}.  Ω𝑋,𝑌 = {(𝑥, 𝑦)|𝑥 ∈ [4], 𝑦 ∈ [4]}. Since these are fair dice and rolls 
are independent, 

𝑝𝑋,𝑌(𝑥, 𝑦) = 𝑃(𝑋 = 𝑥, 𝑌 = 𝑦) =
1

16
,   (𝑥, 𝑦) ∈ Ω𝑋,𝑌 

 

Now let’s say we only cared about the distribution of 𝑋. What is 𝑝𝑋(𝑡) = 𝑃(𝑋 = 𝑡)?  Independence 

allows us to ignore 𝑌, and we know the die is fair, so  
 

𝑝𝑋(𝑡) =
1

4
,   𝑡 ∈ [4] 

 

Symmetrically, 𝑝𝑌(𝑡) =
1

4
, 𝑡 ∈ [4]. Notice that, because 𝑋 and 𝑌 are “independent”,  

 

𝑝𝑋,𝑌(𝑥, 𝑦) =
1

16
=

1

4
∙

1

4
= 𝑝𝑋(𝑥)𝑝𝑌(𝑦) 

 

We say that two random variables 𝑋 and 𝑌 are independent if and only if Ω𝑋,𝑌 = Ω𝑋×Ω𝑌 and 
 

𝑝𝑋,𝑌(𝑥, 𝑦) = 𝑝𝑋(𝑥)𝑝𝑌(𝑦)   ∀(𝑥, 𝑦) ∈ Ω𝑋,𝑌 
 

and we write that 𝑿 ⊥ 𝒀. Recall for two sets 𝐴, 𝐵, their Cartesian product is 𝐴×𝐵 = {(𝑎, 𝑏)|𝑎 ∈ 𝐴, 𝑏 ∈

𝐵}. Here Ω𝑋,𝑌 = {(𝑥, 𝑦)|𝑥 ∈ [4], 𝑦 ∈ [4]} = {𝑥|𝑥 ∈ [4]}×{𝑦|𝑦 ∈ [4]} = Ω𝑋×Ω𝑌. 
 

Now suppose 𝑆 = max{𝑋, 𝑌} and 𝑇 = min{𝑋, 𝑌}.  Find 𝑝𝑆,𝑇(𝑠, 𝑡).  Are 𝑆 and 𝑇 independent? 
 

No they are not.  This is because 𝑆 ≥ 𝑇 always. We can also see that the joint range Ω𝑆,𝑇 =
{(𝑠, 𝑡)|𝑠 ∈ [4], 𝑡 ∈ [4], 𝑠 ≥ 𝑡} ≠ [4]×[4] = Ω𝑆×Ω𝑇, so we can immediately claim that they are 
dependent. 
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𝑝𝑆,𝑇(𝑠, 𝑡) 

𝑠\𝑡 1 2 3 4 

1 1/16 0 0 0 

2 2/16 1/16 0 0 

3 2/16 2/16 1/16 0 

4 2/16 2/16 2/16 1/16 
 

Now let’s say we only care about the distribution of the maximum, or 𝑝𝑆(𝑠). How would we go about it?  
 

For example, let’s consider finding 𝑝𝑆(2) = 𝑃(𝑆 = 2). It is very natural to say, “sum up the entire row 

where 𝑆 = 2”. And this is completely correct! We also call a distribution with fewer variables (in our case, 

just 1) than the joint distribution a marginal distribution. We define it as 
 

𝒑𝑺(𝒔) = 𝑷(𝑺 = 𝒔) = ∑ 𝒑𝑺,𝑻(𝒔, 𝒕)

𝒕

 

  
So here, 

𝑝𝑆(𝑠) = {

1/16, 𝑠 = 1
3/16, 𝑠 = 2
5/16, 𝑠 = 3
7/16, 𝑠 = 4

 

 
Notice that 
 

∑ 𝑝𝑆(𝑠)

𝑠

= 1 

 
as it should! 
 
What if we wanted to know the value of the maximum, conditioned on the value of the minimum? Or the 

random variable 𝑆|𝑇? We define the conditional distribution of 𝑺 given 𝑻 as 𝒑𝑺|𝑻(𝒔|𝒕) =

𝑷(𝑺 = 𝒔|𝑻 = 𝒕) =
𝑷(𝑺=𝒔,𝑻=𝒕)

𝑷(𝑻=𝒕)
=

𝒑𝑺,𝑻(𝒔,𝒕)

𝒑𝑻(𝒕)
. This is just the definition of conditional probability! Again, 

naturally, we have 
 

∑ 𝑝𝑆|𝑇(𝑠|𝑡)

𝑠

= 1  ∀𝑡 

 

Exercise: Find 𝑝𝑆|𝑇(𝑠|3) = 𝑃(𝑆 = 𝑠|𝑇 = 3). What is Ω𝑆|𝑇?  

Solution: If 𝑇 = 3, then the minimum value was 3, so 𝑆|𝑇 ∈ {3,4} only!   
 

𝑝𝑇(3) = ∑ 𝑝𝑆,𝑇(𝑠, 3)

𝑠

=
1

16
+

2

16
=

3

16
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𝑝𝑆|𝑇(𝑠|3) =
𝑝𝑆,𝑇(𝑠, 3)

𝑝𝑇(3)
 

 

𝑝𝑆|𝑇(1|3) = 𝑝𝑆|𝑇(2|3) = 0 

𝑝𝑆|𝑇(3|3) =
𝑝𝑆,𝑇(3,3)

𝑝𝑇(3)
=

1/16

3/16
= 1/3 

𝑝𝑆|𝑇(4|3) =
𝑝𝑆,𝑇(4,3)

𝑝𝑇(3)
=

2/16

3/16
= 2/3 

 

Now let’s talk about expectation and variance. Recall that for a single variable 𝑋,  
 

𝐸[𝑋] = ∑ 𝑥𝑝𝑋(𝑥)

𝑥

 

𝐸[𝑔(𝑋)] = ∑ 𝑔(𝑥)𝑝𝑋(𝑥)

𝑥

 

 
We define expectation for a function of two random variables similarly! 
 

𝐸[𝑔(𝑋, 𝑌)] = ∑ ∑ 𝑔(𝑥, 𝑦)𝑝𝑋,𝑌(𝑥, 𝑦)

𝑦𝑥

 

 

Exercise: Prove that 𝐸[𝑋 + 𝑌] = 𝐸[𝑋] + 𝐸[𝑌], for any two random variables 𝑋 and 𝑌 (even if not 
independent)! 
Solution:  

𝐸[𝑋 + 𝑌] = ∑ ∑(𝑥 + 𝑦)𝑝𝑋,𝑌(𝑥, 𝑦)

𝑦𝑥

= ∑ ∑ 𝑥𝑝𝑋,𝑌(𝑥, 𝑦)

𝑦𝑥

+ ∑ ∑ 𝑦𝑝𝑋,𝑌(𝑥, 𝑦)

𝑥𝑦

 

= ∑ 𝑥 ∑ 𝑝𝑋,𝑌(𝑥, 𝑦)

𝑦𝑥

+ ∑ 𝑦 ∑ 𝑝𝑋,𝑌(𝑥, 𝑦)

𝑥𝑦

= ∑ 𝑥𝑝𝑋(𝑥)

𝑥

+ ∑ 𝑦𝑝𝑌(𝑦)

𝑦

 [𝑑𝑒𝑓 𝑜𝑓 𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙] 

= 𝐸[𝑋] + 𝐸[𝑌] 
 

Exercise: Prove that, if 𝑋 ⊥ 𝑌, then 𝐸[𝑋𝑌] = 𝐸[𝑋]𝐸[𝑌]. 
Solution: 

𝐸[𝑋𝑌] = ∑ ∑ 𝑥𝑦𝑝𝑋,𝑌(𝑥, 𝑦)

𝑦𝑥

= ∑ ∑ 𝑥𝑦𝑝𝑋(𝑥)𝑝𝑌(𝑦)

𝑦𝑥

 [𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒] 

= ∑ 𝑥𝑝𝑋(𝑥) ∑ 𝑦𝑝𝑌(𝑦)

𝑦𝑥

= (∑ 𝑥𝑝𝑋(𝑥)

𝑥

) (∑ 𝑦𝑝𝑌(𝑦)

𝑦

) = 𝐸[𝑋]𝐸[𝑌] 

 

Note that the converse is not true! If 𝐸[𝑋𝑌] = 𝐸[𝑋]𝐸[𝑌], it does not necessarily imply 𝑋 ⊥ 𝑌. 
 

Recall the variance of a random variable 𝑋 was defined as 𝐸[(𝑋 − 𝜇𝑋)2] = 𝐸[𝑋2] − 𝐸2[𝑋], where 

𝜇𝑋 = 𝐸[𝑋]. We define the covariance of 𝑿 and 𝒀 as 𝑪𝒐𝒗(𝑿, 𝒀) = 𝑬[(𝑿 − 𝝁𝑿)(𝒀 − 𝝁𝒀)]. This is 
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very similar to why we defined variance: it describes how far on average 𝑋 varies about its mean while 𝑌 

varies about its mean. If 𝐶𝑜𝑣(𝑋, 𝑌) > 0, we say that 𝑋 and 𝑌 are positively correlated (that is, very 

roughly, if 𝑋 is higher, then 𝑌 is typically higher, and vice versa). If 𝐶𝑜𝑣(𝑋, 𝑌) < 0, we say that 𝑋 and 𝑌 

are negatively correlated. Notice that 𝑪𝒐𝒗(𝑿, 𝑿) = 𝑬[(𝑿 − 𝝁𝑿)𝟐] = 𝑽𝒂𝒓(𝑿). 
 

Exercise: Show from the definition of covariance that 𝐶𝑜𝑣(𝑋, 𝑌) = 𝐸[𝑋𝑌] − 𝐸[𝑋]𝐸[𝑌]. 
Solution:  
 

𝐶𝑜𝑣(𝑋, 𝑌) = 𝐸[(𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑌)] = 𝐸[𝑋𝑌 − 𝜇𝑋𝑌 − 𝜇𝑌𝑋 + 𝜇𝑋𝜇𝑌] 

= 𝐸[𝑋𝑌] − 𝜇𝑋𝐸[𝑌] − 𝜇𝑌𝐸[𝑋] + 𝜇𝑋𝜇𝑌 = 𝐸[𝑋𝑌] − 𝜇𝑋𝜇𝑌 − 𝜇𝑋𝜇𝑌 + 𝜇𝑋𝜇𝑌 

= 𝐸[𝑋𝑌] − 𝜇𝑋𝜇𝑌 = 𝐸[𝑋𝑌] − 𝐸[𝑋]𝐸[𝑌] 
 

Exercise: If 𝐶𝑜𝑣(𝑋, 𝑌) = 0, should we say that 𝑋 and 𝑌 are independent? 

Solution: No!! If 𝐶𝑜𝑣(𝑋, 𝑌) = 0, then 𝐸[𝑋𝑌] = 𝐸[𝑋]𝐸[𝑌], and we cannot claim independence (stated 
earlier). 
 

We define the correlation of 𝑿 and 𝒀 as 𝝆𝑿,𝒀 =
𝑪𝒐𝒗(𝑿,𝒀)

√𝑽𝒂𝒓(𝑿)𝑽𝒂𝒓(𝒀)
. This measure is always between −1 

and 1, and you may have seen this before in linear regression! Correlation is a standardized measure of 

covariance – it is just normalized by the variances of 𝑋 and 𝑌. When does 𝜌𝑋,𝑌 = ±1? This is the case 

when 𝑌 = 𝑎𝑋 + 𝑏 for any 𝑎 ≠ 0, 𝑏 ∈ ℝ! That means, as 𝑋 changes, we can exactly predict 𝑌 because 𝑌 

is some linear function of 𝑋. We will show this for 𝑎 = 1, 𝑏 = 0. Suppose 𝑋 = 𝑌. 𝜌𝑋,𝑌 =
𝐶𝑜𝑣(𝑋,𝑋)

𝑉𝑎𝑟(𝑋)
=

𝑉𝑎𝑟(𝑋)

𝑉𝑎𝑟(𝑋)
= 1. 

 
Properties of Covariance: 

 𝐶𝑜𝑣(𝑎𝑋 + 𝑏, 𝑐𝑋 + 𝑑) = 𝑎𝑐𝐶𝑜𝑣(𝑋, 𝑌) 

 𝐶𝑜𝑣(𝑋 + 𝑌, 𝑊 + 𝑍) = 𝐶𝑜𝑣(𝑋, 𝑊) + 𝐶𝑜𝑣(𝑌, 𝑊) + 𝐶𝑜𝑣(𝑋, 𝑍) + 𝐶𝑜𝑣(𝑌, 𝑍) 

 𝐶𝑜𝑣(𝑋, 𝑌) = 𝐶𝑜𝑣(𝑌, 𝑋) 
 

Recall in class we showed that, if 𝑋 ⊥ 𝑌, then 𝑉𝑎𝑟(𝑋 + 𝑌) = 𝑉𝑎𝑟(𝑋) + 𝑉𝑎𝑟(𝑌). 
 

Exercise: Show that, in general, 𝑉𝑎𝑟(𝑋 + 𝑌) = 𝑉𝑎𝑟(𝑋) + 𝑉𝑎𝑟(𝑌) + 2𝐶𝑜𝑣(𝑋, 𝑌). Notice that this 

doesn’t contradict what we said earlier: if 𝑋 ⊥ 𝑌, 𝐶𝑜𝑣(𝑋, 𝑌) = 0 and so 𝑉𝑎𝑟(𝑋 + 𝑌) = 𝑉𝑎𝑟(𝑋) +

𝑉𝑎𝑟(𝑌). 
Solution: 

𝑉𝑎𝑟(𝑋 + 𝑌) = 𝐸[(𝑋 + 𝑌)2] − 𝐸2[𝑋 + 𝑌] = 𝐸[𝑋2 + 2𝑋𝑌 + 𝑌2] − (𝜇𝑋 + 𝜇𝑌)2 

= 𝐸[𝑋2] + 2𝐸[𝑋𝑌] + 𝑌2 − 𝜇𝑋
2 − 2𝜇𝑋𝜇𝑌 − 𝜇𝑌

2 

= (𝐸[𝑋2] − 𝜇𝑋
2 ) + (𝐸[𝑌2] − 𝜇𝑌

2) + 2(𝐸[𝑋𝑌] − 𝜇𝑋𝜇𝑌) 

= 𝑉𝑎𝑟(𝑋) + 𝑉𝑎𝑟(𝑌) + 2𝐶𝑜𝑣(𝑋, 𝑌) 
 

Now we continue with the example. Recall 𝑋 and 𝑌 were independent rolls of a fair four-sided die, and 

𝑆 = max{𝑋, 𝑌} and 𝑇 = min {𝑋, 𝑌}. 
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Exercise: Find 𝐸[𝑆𝑇].   

Solution: We use the clever observation that 𝑆𝑇 = 𝑋𝑌 (why?), then exploit that 𝑋 ⊥ 𝑌. 
 

𝐸[𝑆𝑇] = 𝐸[𝑋𝑌] = 𝐸[𝑋]𝐸[𝑌] =
5

2
∙

5

2
=

25

4
 

 

Note that 𝐸[𝑆𝑇] may not equal 𝐸[𝑆]𝐸[𝑇] since 𝑆 and 𝑇 are not independent.  However, 𝑆𝑇 = 𝑋𝑌 

because 𝑆 is either 𝑋 or 𝑌, and 𝑇 is the other (since one is the min and one is the max).  Then since 𝑋 and 

𝑌 are independent, we can write 𝐸[𝑋𝑌] = 𝐸[𝑋]𝐸[𝑌]. 
 

Exercise: Do you expect 𝐶𝑜𝑣(𝑆, 𝑇) > 0 or 𝐶𝑜𝑣(𝑆, 𝑇) < 0? 

Solution: I expect 𝐶𝑜𝑣(𝑆, 𝑇) > 0. This is because higher values of 𝑆 correspond to higher values of 𝑇. If 

𝑇 = 3 for example, 𝑆 ≥ 3 because 𝑆 ≥ 𝑇 always. 
 

3 Random Vectors 
 

Let 𝑋1, … , 𝑋𝑛 be arbitrary real-valued random variables, and stack them into a vector 
 

𝑿 = [
𝑋1

⋮
𝑋𝑛

] 

 

We call 𝑿 an 𝒏-dimensional random vector (rvtr). We will see why these are useful later. What can 
we do with these?  We define the expectation of a random vector just as you would hope: coordinate-wise. 
 

𝐸[𝑿] = [
𝐸[𝑋1]

⋮
𝐸[𝑋𝑛]

] 

 

Define the covariance matrix (or variance-covariance matrix) of a rvtr 𝑿 ∈ ℝ𝑛 with 𝐸[𝑿] = 𝝁 

as the matrix 𝑉𝑎𝑟(𝑿) = Σ whose entries Σ𝑖𝑗 = 𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗). 
 

Σ = 𝑉𝑎𝑟(𝑿) = 𝐶𝑜𝑣(𝑿) = 𝐸[(𝑿 − 𝝁)(𝑿 − 𝝁)𝑻] = 𝐸[𝑿𝑿𝑻] − 𝝁𝝁𝑻 

= [

𝐶𝑜𝑣(𝑋1, 𝑋1) 𝐶𝑜𝑣(𝑋1, 𝑋2) … 𝐶𝑜𝑣(𝑋1, 𝑋𝑛)

𝐶𝑜𝑣(𝑋2, 𝑋1) 𝐶𝑜𝑣(𝑋2, 𝑋2) … 𝐶𝑜𝑣(𝑋2, 𝑋𝑛)
⋮ ⋮ ⋱ ⋮

𝐶𝑜𝑣(𝑋𝑛, 𝑋1) 𝐶𝑜𝑣(𝑋𝑛, 𝑋2) … 𝐶𝑜𝑣(𝑋𝑛, 𝑋𝑛)

] 

= [

𝑉𝑎𝑟(𝑋1) 𝐶𝑜𝑣(𝑋1, 𝑋2) … 𝐶𝑜𝑣(𝑋1, 𝑋𝑛)
𝐶𝑜𝑣(𝑋2, 𝑋1) 𝑉𝑎𝑟(𝑋2) … 𝐶𝑜𝑣(𝑋2, 𝑋𝑛)

⋮ ⋮ ⋱ ⋮
𝐶𝑜𝑣(𝑋𝑛, 𝑋1) 𝐶𝑜𝑣(𝑋𝑛, 𝑋2) … 𝑉𝑎𝑟(𝑋𝑛)

] 

 

where the second equality is because 𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑖) = 𝑉𝑎𝑟(𝑋𝑖). Notice that the covariance matrix is 

symmetric (Σ𝑖𝑗 = Σ𝑗𝑖), and contains variances along the diagonal. For those with more linear algebra 

background, covariance matrices are also positive semi-definite. That is, ∀𝒗 ∈ ℝ𝑛, 𝒗𝑻Σ𝒗 ≥ 0. 
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Proof: 
 

First, 𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗) = 𝐶𝑜𝑣(𝑋𝑗, 𝑋𝑖), so Σ is symmetric. Second, let 𝒗 ∈ ℝ𝑛  be arbitrary. Recall Σ =

𝐸[(𝑿 − 𝝁)(𝑿 − 𝝁)𝑻], and define the random variable (not random vector) 𝑌 ≡ 𝒗𝑻(𝑿 − 𝝁) = 𝒗 ∙

(𝑿 − 𝝁). Then 𝒗𝑻Σ𝒗 = 𝒗𝑻𝐸[(𝑿 − 𝝁)(𝑿 − 𝝁)𝑻]𝒗 = 𝐸[𝒗𝑻(𝑿 − 𝝁)(𝑿 − 𝝁)𝑻𝒗] =

𝐸[(𝒗𝑻(𝑿 − 𝝁))((𝑿 − 𝝁)𝑻𝒗)] = 𝐸[(𝒗 ∙ (𝑿 − 𝝁))((𝑿 − 𝝁) ∙ 𝒗)] = 𝐸[𝑌2] ≥ 0. 
 

Q.E.D. 
 

Properties of expectation and variance still hold for rvtrs.  Let 𝑿 be an 𝑛-dimensional rvtr, 𝐴 ∈ ℝ𝑛×𝑛 be a 

constant matrix, 𝒄 ∈ ℝ𝑛 be a constant vector, and suppose 𝒀 = 𝐴𝑿 + 𝒄. Then, 
 

𝐸[𝒀] = 𝐴𝐸[𝑿] + 𝒄 

𝑉𝑎𝑟(𝒀) = 𝐴 𝑉𝑎𝑟(𝑿) 𝐴𝑇 
 

Just as an FYI, for two rvtrs 𝑿, 𝒀 in ℝ𝑛 with 𝝁𝑿 = 𝐸[𝑿] and 𝝁𝒀 = 𝐸[𝒀], their cross-covariance matrix is 

given as 𝐶𝑜𝑣(𝑿, 𝒀) = 𝐸[(𝑿 − 𝝁𝑿)(𝒀 − 𝝁𝒀)𝑇]. 
 

4 The Multinomial Distribution 
 

Recall the binomial distribution: if we flip a coin with 𝑃(ℎ𝑒𝑎𝑑) = 𝑝 independently 𝑛 times, and let 𝑋 be 

the number of heads, then we say 𝑋 has the binomial distribution with parameters 𝒏 and 𝒑, and we 

write 𝑿~𝑩𝒊𝒏(𝒏, 𝒑). 
 

𝑝𝑋(𝑘) = 𝑃(𝑋 = 𝑘) = (
𝑛

𝑘
) 𝑝𝑘(1 − 𝑝)𝑛−𝑘,   𝑘 = 0,1, … , 𝑛 

 

This is because a particular sequence with exactly 𝑘 heads out of 𝑛 flips has probability 𝑝𝑘(1 − 𝑝)𝑛−𝑘, and 

there are (𝑛
𝑘

) ways to choose which flips were heads and the rest must be tails. As an exercise, verify that 

𝐸[𝑋] = 𝑛𝑝 and 𝑉𝑎𝑟(𝑋) = 𝑛𝑝(1 − 𝑝) (Hint: use linearity of expectation/variance by writing 𝑋 as the 

sum of iid 𝐵𝑒𝑟(𝑝).) 
 

A generalization of the binomial model is when there are 𝑟 different outcomes in a sequence of 𝑛 

independent trials, with 𝑃(𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑖) = 𝑝𝑖 for 1 ≤ 𝑖 ≤ 𝑟, and 𝑝1 + ⋯ + 𝑝𝑟 = 1.  Let (𝑋1, … , 𝑋𝑟) 

be the random vector such that 𝑋𝑖 is the number of times we observed outcome 𝑖 in 𝑛 independent trials, 

where clearly 𝑋1 + ⋯ + 𝑋𝑟 = 𝑛.  We write that (𝑿𝟏, … , 𝑿𝒓)~𝑴𝒖𝒍𝒕𝒓(𝒏, 𝒑𝟏, … , 𝒑𝒓).  Find the joint 

probability mass function for the multinomial random vector, 𝑝𝑋1,…,𝑋𝑟
(𝑘1, … , 𝑘𝑟). 

 

𝑝𝑋1,…,𝑋𝑟
(𝑘1, … , 𝑘𝑟) =

𝑛!

𝑘1! … 𝑘𝑟!
𝑝1

𝑘1 … 𝑝𝑟
𝑘𝑟 = (

𝑛

𝑘1, … , 𝑘𝑟
) ∏ 𝑝𝑖

𝑘𝑖

𝑟

𝑖=1

, 𝑘1 + ⋯ + 𝑘𝑟 = 𝑛 

 

The derivation is almost the same as that of the binomial. Think about how to define the “negative 
multinomial distribution! 
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Find the covariance matrix Σ for 𝑿, when 𝑿~𝑀𝑢𝑙𝑡𝑟(𝑛, 𝒑), where 𝑿 is 𝑟-dimensional and 𝒑 ∈ ℝ𝑟 is a 

probability vector (a vector whose entries are nonnegative and sum to 1). If you think about it, the 

distribution of a single rv 𝑋𝑖 is 𝐵𝑖𝑛(𝑛, 𝑝𝑖) (why?). So Σ𝑖𝑖 = 𝑉𝑎𝑟(𝑋𝑖) = 𝑛𝑝𝑖(1 − 𝑝𝑖). Now we need to 

find Σ𝑖𝑗 = 𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗) for 𝑖 ≠ 𝑗. Before we compute this, should we expect a positive or negative 
covariance? We should expect a negative covariance because if one increases, the other cannot be as high 

(since they all sum to 𝑛). Calculating this covariance is too hard for us right now, but it turns out that 

𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗) = −𝑛𝑝𝑖𝑝𝑗.  So this fully specifies Σ. 
 

5 Conclusion 
 

These are all very important topics! Please make sure you understand everything written above – 
everything here is crucial for success in future courses in machine learning, artificial intelligence, natural 
language processing, computer vision, and randomized algorithms. 
 

6 Additional Exercises 
 

1. Let 𝑋 and 𝑌 be random variables with ranges Ω𝑋 and Ω𝑌, respectively. Write an expression for  𝑃(𝑋 =

𝑌). (It may be a sum, or product). 
 

𝑃(𝑋 = 𝑌) = ∑ 𝑝𝑋,𝑌(𝑡, 𝑡)

𝑡∈ΩX∩Ω𝑌

 

 
 
2. Suppose we are measuring particle emissions, and the number of particles emitted follows a Poisson 

distribution with parameter 𝜆, 𝑋~𝑃𝑜𝑖(𝜆).  Suppose our device to measure emissions is not always entirely 
accurate – sometimes we fail to observe particles that actually are emitted.  So for each particle actually 

emitted, say we have probability 𝑝 close to 1 of actually recording it, independently of other particles.  Let 

𝑌 be the number of particles we actually measure. What is 𝑝𝑌(𝑦)? 
 

𝑝𝑌(𝑦) = 𝑃(𝑌 = 𝑦) = ∑ 𝑃(𝑌 = 𝑦|𝑋 = 𝑥)𝑃(𝑋 = 𝑥)

∞

𝑥=𝑦

 

= ∑ (
𝑥

𝑦
) 𝑝𝑦(1 − 𝑝)𝑥−𝑦𝑒−𝜆

𝜆𝑥

𝑥!

∞

𝑥=𝑦

 

= 𝑒−𝜆𝑝𝑦 ∑
𝑥!

𝑦! (𝑥 − 𝑦)!
(1 − 𝑝)𝑥−𝑦  

𝜆𝑥

𝑥!

∞

𝑥=𝑦

 

=
𝑒−𝜆𝑝𝑦

𝑦!
∑

𝜆𝑥

(𝑥 − 𝑦)!
(1 − 𝑝)𝑥−𝑦 

∞

𝑥=𝑦

 

𝑘 = 𝑥 − 𝑦 

𝑒−𝜆𝑝𝑦

𝑦!
∑

𝜆𝑘+𝑦

𝑘!
(1 − 𝑝)𝑘 

∞

𝑘=0
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=
𝑒−𝜆(𝜆𝑝)𝑦

𝑦!
∑

𝜆𝑘

𝑘!
(1 − 𝑝)𝑘 

∞

𝑘=0

 [𝑇𝑎𝑦𝑙𝑜𝑟 𝑠𝑒𝑟𝑖𝑒𝑠 𝑓𝑜𝑟 𝑒−𝜆(1−𝑝)] 

=
𝑒−𝜆(𝜆𝑝)𝑦

𝑦!
𝑒−𝜆(1−𝑝) =

𝑒−𝑝𝜆(𝜆𝑝)𝑦

𝑦!
 

 

So 𝑌~𝑃𝑜𝑖(𝑝𝜆). 
 

3. Suppose 𝑋1, … , 𝑋𝑛 are iid random variables with common mean 𝜇 and common variance 𝜎2.  Let �̅� =
1

𝑛
∑ 𝑋𝑖

𝑛
𝑖=1  (the sample mean).  Find 𝐸[�̅�] and 𝑉𝑎𝑟(�̅�). 

 

𝐸[�̅�] = 𝐸 [
1

𝑛
∑ 𝑋𝑖

𝑛

𝑖=1

] =
1

𝑛
∑ 𝐸[𝑋𝑖]

𝑛

𝑖=1

=
1

𝑛
𝑛𝜇 = 𝜇 

𝑉𝑎𝑟(�̅�) = 𝑉𝑎𝑟 (
1

𝑛
∑ 𝑋𝑖

𝑛

𝑖=1

) =
1

𝑛2
∑ 𝑉𝑎𝑟(𝑋𝑖)

𝑛

𝑖=1

=
1

𝑛2
𝑛𝜎2 =

𝜎2

𝑛
 

 

4. Suppose 𝑋, 𝑌, 𝑍 are discrete random variables with the following joint probability mass function 
 

𝑥 = 0 

𝑦\𝑧 5 6 

3 1/4 1/16 

4 1/16 1/8 
 

𝑥 = 1 

𝑦\𝑧 5 6 

3 1/16 5/16 

4 1/16 1/16 
 

There are two possible values of each random variable, and as an example, 𝑝𝑋,𝑌,𝑍(1,3,6) = 5/16. 
 

a) Find the marginal joint probability mass function, 𝑝𝑌,𝑍(𝑦, 𝑧), and specify the values of this function for 

all 𝑦, 𝑧 ∈ ℝ. 
 

𝑝𝑌,𝑍(𝑦, 𝑧) = {

5/16, (𝑦, 𝑧) = (3,5)
6/16, (𝑦, 𝑧) = (3,6)
2/16, (𝑦, 𝑧) = (4,5)
3/16, (𝑦, 𝑧) = (4,6)

 

 

b) Find 𝐸[(𝑌 − 1)(𝑍 − 3)]. 
 

𝐸[(𝑌 − 1)(𝑍 − 3)] = ∑ (𝑦 − 1)(𝑧 − 3) ∙ 𝑝𝑌,𝑍(𝑦, 𝑧)
(𝑦,𝑧)∈Ω𝑌,𝑍
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= 2 ∙ 2 ∙
5

16
+ 2 ∙ 3 ∙

6

16
+ 3 ∙ 2 ∙

2

16
+ 3 ∙ 3 ∙

3

16
=

20 + 36 + 12 + 27

16
=

95

16
 

 

c) Find the marginal probability mass function, 𝑝𝑋(𝑥) and specify the values of this function for all 𝑥 ∈ ℝ. 
 

𝑝𝑋(𝑥) = {
1/2, 𝑥 = 0
1/2, 𝑥 = 1

 

 

d) Identify 𝑋 as one of the named distributions, and give 𝐸[𝑋] and 𝑉𝑎𝑟(𝑋). 
 

𝑋~𝐵𝑒𝑟 (
1

2
) so 𝐸[𝑋] =

1

2
, 𝑉𝑎𝑟(𝑋) =

1

2
(1 −

1

2
) =

1

4
. Alternatively, 𝑋~𝑈𝑛𝑖𝑓(0,1) so 𝐸[𝑋] =

1

2
 and 

𝑉𝑎𝑟(𝑋) =
(1−0)(1−0+2)

12
=

1

4
. 

 

e) Find 𝐸[16(𝑌 − 1)(𝑍 − 3) + 2𝑋7 + 2].  
 

Notice 𝑋7 ≡ 𝑋, so 𝐸[𝑋7] = 𝐸[𝑋] =
1

2
. 

𝐸[16(𝑌 − 1)(𝑍 − 3) + 2𝑋7 + 2] = 16𝐸[(𝑌 − 1)(𝑍 − 3)] + 2𝐸[𝑋7] + 2 = 95 + 1 + 2 = 98 
 

5. Suppose 𝑊, 𝑋, 𝑌, 𝑍 are arbitrary random variables. Write an expression for 𝑝𝑊,𝑌(𝑤, 𝑦) and then 

𝑝𝑍|𝑊,𝑌(𝑧|𝑤, 𝑦), only in terms of 𝑝𝑊,𝑋,𝑌,𝑍 and summations. 

 

𝑝𝑊,𝑌(𝑤, 𝑦) = ∑ ∑ 𝑝𝑊,𝑋,𝑌,𝑍(𝑤, 𝑥, 𝑦, 𝑧)

𝑧𝑥

 

𝑝𝑍|𝑊,𝑌(𝑧|𝑤, 𝑦) =
𝑝𝑊,𝑌,𝑍(𝑤, 𝑦, 𝑧)

𝑝𝑊,𝑌(𝑤, 𝑦)
=

∑ 𝑝𝑊,𝑋,𝑌,𝑍(𝑤, 𝑥, 𝑦, 𝑧)𝑥

∑ ∑ 𝑝𝑊,𝑋,𝑌,𝑍(𝑤, 𝑥, 𝑦, 𝑧)𝑧𝑥
 

 

6. A generalization of the hypergeometric model is when there are 𝑟 different colors of balls in a bag, 

having 𝐾𝑖 balls of each color, 1 ≤ 𝑖 ≤ 𝑟.   Let  𝑁 = 𝐾1 + ⋯ + 𝐾𝑟, the total number of balls in the bag, 

and suppose we draw 𝑛 without replacement.  Let (𝑋1, … , 𝑋𝑟) be the random vector (vector of random 

variables) such that 𝑋𝑖 is the number of balls of color 𝑖 we drew, where clearly 𝑋1 + ⋯ + 𝑋𝑟 = 𝑛.  We 

write that (𝑿𝟏, … , 𝑿𝒓)~𝑴𝑽𝑯𝑮𝒓(𝑵, 𝒏, 𝑲𝟏, … , 𝑲𝒓).  Find the joint probability mass function for the 

multivariate hypergeometric random vector, 𝑝𝑋1,…,𝑋𝑟
(𝑘1, … , 𝑘𝑟).  

 

𝑝𝑋1,…,𝑋𝑟
(𝑘1, … , 𝑘𝑟) =

(𝐾1
𝑘1

) … (𝐾𝑟
𝑘𝑟

)

(𝑁
𝑛

)
=

∏ (𝐾𝑖
𝑘𝑖

)𝑟
𝑖=1

(𝑁
𝑛

)
,     𝑘1 + ⋯ + 𝑘𝑟 = 𝑛 

 
Derivation identical to that of the hypergeometric. 
 
 
 
 


