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0 Introduction 
 
The applications of probability to computer science are growing, and it is increasingly important for 
computer scientists to be proficient in the language of probability. It could help you win on a game show, 
win at gambling, design efficient algorithms, and/or perform machine learning tasks! We discuss some 
paradoxes below, and applications of probability to hashing, and in particular, the bloom filter data 
structure. 

 
1 Monty Hall Problem 
 
The Monty Hall Problem is as follows: you are on a game show, and there are three doors for you to choose 
from. One of them has a car behind it, and the other two have goats behind them. You pick a door, say 
without loss of generality (WLOG) door #1, and then the host opens another door WLOG, door #3 
which has a goat behind it. You are then given the option to switch doors to door #2 – should you switch 
doors? 
 
The standard assumptions are that: the host will open a door that the contestant didn’t choose, that he will 
always only reveal a goat, and you will always have a choice to switch doors. 
 
What do you think? It seems reasonable to think that there is no point in switching because the probability 
that it’s behind your door or the other door should be equal right? But the answer is in fact, that it is better 
to switch doors! Suppose WLOG that you choose door 1, let’s do a case analysis: 
 

 Door #1 Door #2 Door #3 Win if Stay Win if Switch 

Case 1 Car Goat Goat Car Goat 

Case 2 Goat Car Goat Goat Car 

Case 3 Goat Goat Car Goat Car 

 
You can see that these three are all equally likely, and you will win the car in two of the three scenarios! So 
in fact, it is better to switch. You can think of it like this – when he opens one of the other doors, it is a 

goat, and the 1/3 probability of that door being a car had to go somewhere. The question is – did it go 

evenly to the remaining two doors? This analysis shows that the 1/3 probability “went” to the other 

unopened door, so in fact the probability that the car is behind your door is 1/3 while the probability the 

car is behind the other becomes 
1

3
+

1

3
=

2

3
. This is a an interesting paradox to think about! 

 
To help with intuition, suppose instead there are 1,000,000 doors instead of 3, and again WLOG you 
picked door #1. If he showed you 9,999,998 of the others were goats, you’d be quick to switch! 
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2 Birthday Paradox 
 

What is the probability that out of 𝑛 people, none share the same birthday as you? Assume that there are 

only 365 possible birthdays, each equally probable. Let 𝐸 be the event that none of the 𝑛 people share the 
same birthday as you. Then,  
 

|𝐸| = 364𝑛 
 

because each of them can choose one of the other 364 days. The sample space is the number of different 
ways they can have birthdays, which gives 
 

|Ω| = 365𝑛  
 
So,  
 

ℙ(𝐸) =
|𝐸|

|Ω|
= (

364

365
)

𝑛

 

 

For some values of 𝑛 – if 𝑛 = 23, this value is about 0.94, if 𝑛 = 90, this value is about 0.78, and if 𝑛 =

253, this value is just under 0.50. 
 

Now, suppose we still have 𝑛 people in the room, but now we ask what is the probability that no two of 

them share a birthday? Well, if 𝑛 > 365, the probability is 0 by the pigeonhole principle. Otherwise, let 𝐹 

be the event that none of them share the same birthday. This is the number of 𝑛-permutations, so 
 

|𝐹| = 𝑃(365, 𝑛) = 365 ∙ 364 ∙ … ∙ (365 − (𝑛 − 1)) 
 

and the sample size is the same: |Ω| = 365𝑛. 
 
Therefore, 
 

ℙ(𝐹) =
|𝐹|

|Ω|
=

𝑃(365, 𝑛)

365𝑛
=

365

365
∙

364

365
∙ … ∙

365 − (𝑛 − 1)

365
 

 

For some values of 𝑛 – if 𝒏 = 𝟐𝟑, this value is just under 𝟎. 𝟓𝟎, if 𝑛 = 90, this value is <
1

162,000
, 

and if 𝑛 = 150, this value is <
1

3,000,000,000,000,000
. 

 
Why are the results so different? It’s because in the first analysis, we looked at the probability just no one 

shared a birthday with you, so we were considering 𝑛 possible matches to your birthday. In the second 

analysis, we looked at (𝑛
2

) pairs and saw what the probability of any of those pairs sharing a birthday was. It 

makes sense that it requires much fewer people to have a single match in the second case! 
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3 Hashing 
 

One application of probability to computer science is in hashing – when we have a hash function ℎ which 

maps elements 𝑥 to some index in a hash table. You’ve learned in CSE 332 how to handle hash collisions, 

but we will analyze some results probabilistically, assuming that ℎ hashes elements 𝑥 uniformly at random 

to each bucket. That is, assume hash values are uniform and independent over {0,1, … , 𝑚 − 1}. 
 

Suppose we have 𝑛 items and 𝑚 buckets (𝑛 elements into a hash table of size 𝑚), and each element is 

equally likely to be hashed to any of the 𝑚 buckets by ℎ. We can ask several questions. 
 
Exercise: What is the probability that any two elements hash to the same bucket? 

Solution: The answer is simply 
1

𝑚
. The first hashes to some bucket 𝑘, and the probability that the second 

also hashes to 𝑘 is just 
1

𝑚
. 

 

Exercise: Assume 𝑚 = 𝑛. What is the probability that a particular bucket is empty after all 𝑛 elements 

are put into the hash table?  What happens to this quantity as 𝑛 → ∞? 

Solution: The probability that a single item isn’t hashed to a particular bucket is (1 −
1

𝑛
). The probability 

that each of 𝑛 items doesn’t hash to this particular bucket is (1 −
1

𝑛
)

𝑛

, by independence. As 𝑛 → ∞, this 

quantity approaches 1/𝑒. 
 

Exercise: What is the probability that a particular bucket has exactly 𝑘 elements in it? 

Solution: Out of the 𝑛 items, we need 𝑘 of them to hash to this bin. There are (𝑛
𝑘

) ways to choose which 

𝑘. Once we’ve selected which 𝑘 of them to hash to this bin, the other 𝑛 − 𝑘 must not hash to this bin. This 

happens with probability (
1

𝑚
)

𝑘

(1 −
1

𝑚
)

𝑛−𝑘

. So the answer is (𝑛
𝑘

) (
1

𝑚
)

𝑘

(1 −
1

𝑚
)

𝑛−𝑘

. 

 
You can do a lot more analysis, and ask questions that we don’t have the tools to answer yet. Some may 
include – what’s the expected load of each bin? What is the expected maximum load?   
 

4 Bloom Filters 
 
Suppose we wanted to implement a probabilistic data structure that would only have the two 
operations: 

 add(𝑥): adds 𝑥 to the data structure 

 contains(𝑥): returns whether or not this element was already added to the data structure 
 

However, contains(𝑥) would not be deterministic - if we return false, then 𝑥 definitely isn’t in the data 

structure. If we return true, then 𝑥 “probably” is in the data structure. Therefore, we may get an incorrect 
answer with some probability.  
 

We maintain this data structure using a bit array of length 𝑚 – that is, an array of length 𝑚 with only 0’s 

and 1’s. Initially, all elements of the array (call it 𝑡) are set to 0. Let 𝑋 be the possible elements we can add 
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to this data structure (e.g., integers, strings, etc). Suppose we have some hash function ℎ: 𝑋 →

{0,1, … , 𝑚 − 1}. Below, we describe the implementations of add(𝑥) and contains(𝑥). 
 

add(𝑥): 

 𝑡[ℎ(𝑥)] = 1 
contains(𝑥): 

 return 𝑡[ℎ(𝑥)] == 1 
 

You can see that these operations are both 𝒪(1) time and the space required is 𝒪(𝑚). Hopefully you can 
see why there are “one-sided errors” – if we return false, then the element definitely is not in the data 

structure, because if it were, we would’ve set the hash value to 1. However, if we return true, the element 

may or may not be in the data structure, since some other element we added could’ve set the bit to 1. 
We’ll make the same probabilistic assumptions we did in section 3 about hashing (uniform, independent). 
 

Exercise: Suppose we have hashed 𝑛 different elements 𝑥1, … , 𝑥𝑛 into the data structure, and we now 

query it with contains(𝑥). If 𝑥 was one of the elements that we hashed (it was equal to 𝑥𝑖  for some 𝑖), what 

is the probability that we return the wrong answer (false)? If 𝑥 was not one of the elements that we hashed, 
what is the probability that we return the wrong answer (true)?  

Solution: For the first case, the answer is 0 – if it were added, the bit in 𝑡 at its hash value would be set to 

1 and we would be guaranteed to return the correct answer. For the second case, the probability that one 

particular element didn’t hash to the same index is 1 −
1

𝑚
, and for this to happen all 𝑛 times, we get 

(1 −
1

𝑚
)

𝑛

. This is the probability of being correct, so the probability of being wrong is 1 − (1 −
1

𝑚
)

𝑛

. 

For a fixed table size 𝑚, as 𝑛 → ∞, the probability of being wrong → 1! 
 
If we have just a single table, we may have a high probability of being wrong. How can we reduce this false 
positive rate (the probability of an error)? 
 
The key to reduce error probability in probabilistic data structures or randomized algorithms is repetition! 

So now suppose we have 𝑘 different independent hash functions ℎ1, … , ℎ𝑘: 𝑋 → {0,1, … , 𝑚 − 1}, and 𝑘 

hash tables of size 𝑚 each, 𝑡1, … , 𝑡𝑘. We call this data structure a bloom filter. Here’s how it implements 
things using this extra space and these extra hash functions: 
 

add(𝑥): 

 for 𝑖 = 1, … , 𝑘 

  𝑡𝑖[ℎ𝑖(𝑥)] = 1 
contains(𝑥): 

 return 𝑡1[ℎ1(𝑥)] == 1 ∧ 𝑡2[ℎ2(𝑥)] == 1 ∧ … ∧ 𝑡𝑘[ℎ𝑘(𝑥)] == 1 
 

This time, add and contains are now both 𝒪(𝑘) time and the space needed is 𝒪(𝑘𝑚). Notice that if 

contains(x) returns false, then at least one of the tables had the hash value set to 0, but if this element were 

in the bloom filter, it would’ve been set to 1 by add. If it returns true, the probability of an incorrect 

answer is significantly decreased. If it were to be a false positive, then all of the indices in the 𝑘 tables 

must’ve been set to 1 by chance – by other elements.  
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Exercise: Suppose we have hashed 𝑛 different elements 𝑥1, … , 𝑥𝑛 into the bloom filter, and we now 

query it with contains(𝑥). If 𝑥 was not one of the elements that we hashed, what is the probability that we 
return the wrong answer (true)?  
Solution: In the previous exercise, we determined that if we used only one table, the answer would be 

1 − (1 −
1

𝑚
)

𝑛

. But the probability of being wrong is the probability that we are wrong in all of them, so 

the answer is (1 − (1 −
1

𝑚
)

𝑛

)
𝑘

. Notice that 1 − (1 −
1

𝑚
)

𝑛

< 1, so by raising it to the 𝑘𝑡ℎ power, the 

error rate is decaying exponentially in 𝑘. So our error rate is lowered by having more hash functions! 
 

You might be wondering, how does this error rate compare to if we had just used one table with 𝑘𝑚 spaces 

in the bit vector instead? This way, contains and add would still be 𝒪(1). Let us assume 𝑚 = 𝑛, and 

suppose 𝑛 is large, for simplicity. If we had just used one larger table, we would have an error rate of: 

1 − (1 −
1

𝑘𝑚
)

𝑛

≤ 𝑒−(1−
1

𝑘𝑚
)

𝑛

≈ 𝑒−𝑒−1/𝑘
 

as opposed to the bloom filter’s 

(1 − (1 −
1

𝑚
)

𝑛

)

𝑘

≤ 𝑒−(1−
1
𝑚

)
𝑛

𝑘 ≈ 𝑒−𝑘𝑒−1
 

where we used the facts that (1 −
𝑏

𝑛
)

𝑛

→ 𝑒−𝑏 and 1 − 𝑥 ≤ 𝑒−𝑥. Notice that, as 𝑘 → ∞ the error for the 

single table is bounded by only 1/𝑒 whereas the error for the bloom filter approaches 0, and does so very 

fast, even for moderate values of 𝑘. However, there is no free lunch unfortunately – this better error bound 

using a bloom filter will cost you 𝒪(𝑘) for add and contains. 
 
Analysis of the Bloom Filter: 

 If we want to keep track of 𝑛 elements with false positive probability ≤ 𝛿, how large do we choose 

𝑚 and 𝑘? 

 If 𝑚 ∈ 𝒪(𝑛) and 𝑘 ∈ 𝒪 (log
1

𝛿
), then ℙ(𝑒𝑟𝑟𝑜𝑟) ≤ 𝛿.  

 
Applications of the bloom filter to computer science are endless! You may not think these are super useful 
(why would it be useful only to check whether something was in the structure?), but here are some 
applications from Wikipedia: 

 Medium uses Bloom filters to avoid recommending articles a user has previously read 

 The Google Chrome web browser used to use a Bloom filter to identify malicious URLs. Any URL 
was first checked against a local Bloom filter, and only if the Bloom filter returned a positive result 
was a full check of the URL performed (and the user warned, if that too returned a positive result). 

 Google BigTable, Apache HBase and Apache Cassandra, and Postgresql use Bloom filters to reduce 
the disk lookups for non-existent rows or columns. Avoiding costly disk lookups considerably 
increases the performance of a database query operation. 
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5 Conclusion 
 
You might think, why would we ever want to do something probabilistically, when we could do it 
deterministically? There are a myriad of reasons – it may not be feasible to run your algorithm because it is 
computationally intractable (NP-Complete), or you don’t mind making errors once in a while if you get a 
huge performance boost. Also, we can improve the worst-case performance of some algorithms – worst-

case analysis of quicksort yields 𝒪(𝑛2) if an adversary were to feed you the input that would make your 
algorithm run as slow as possible. Adding randomness to your pivot would yield an average case of 

𝒪(𝑛 log 𝑛) which has a lower constant factor than mergesort.  
 
Probabilistic data structures and randomized algorithms are used to defend against adversaries, to 
approximate “hard” problems, and their probability of success can usually be boosted by repeatedly running 
the algorithm independently. It is crucial to understand probability in the design & analysis of (efficient) 
algorithms, and also for machine learning! 


