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Special Topics in Combinatorics: Ramsey Theory & Proofs by Counting 
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0 Introduction 
 
Probability has become more and more prominent and useful in computer science, especially in machine 
learning and artificial intelligence. Every week, we will discuss some interesting topic (which you will be 
able to understand we progress through CSE 312), which either I find interesting, or which is extremely 
relevant to fields such as machine learning, or both! Today we discuss Ramsey Theory and the Proofs By 
Counting, but first cover multinomial coefficients and a review of graph terminology.  
 

1 Multinomial Coefficients 
 

Recall that (𝑛
𝑘

) =
𝑛!

𝑘!(𝑛−𝑘)!
 is the number of ways to choose 𝑘 items out of 𝑛, where order does not matter. 

For example, to count the number of ways we can get from (0,0) to (𝑟, 𝑠) with steps only allowed going 
north one unit or east one unit is in one-to-one correspondence with sequences of characters N and E of 

length 𝑟 + 𝑠 with exactly 𝑟 N’s and 𝑠 E’s. The number of different orderings of N’s and E’s is simply 

(𝑟+𝑠
𝑟

) = (𝑟+𝑠
𝑠

) =
(𝑟+𝑠)!

𝑟!𝑠!
 in which you can choose the location of the N’s or E’s.  

 

Now consider a more complicated example, 𝐵𝑈𝐵𝐵𝐿𝐸. How many ways can we rearrange these letters? 

Suppose we numbered the 𝐵’s so that they were distinct, so we are counting the orderings of 

𝐵1𝑈𝐵2𝐵3𝐿𝐸, of which there are 6!. However any permutation of the 𝐵’s is counted 3! times. For 

example, 𝐵1𝑈𝐵2𝐵3𝐿𝐸 = 𝐵1𝑈𝐵3𝐵2𝐿𝐸 = ⋯ = 𝐵3𝑈𝐵2𝐵1𝐿𝐸. So to get our result, we divide by 3! To 

get 
6!

3!
. 

 

Finally consider the word 𝐺𝑂𝐷𝑂𝐺𝐺𝑌. How many ways can we rearrange these letters? Let’s number the 

𝐺’s and 𝑂’s as we did earlier and get 𝐺1𝑂1𝐷𝑂2𝐺2𝐺3𝑌. There are 7! ways to arrange these distinct letters. 

For the 𝐺’s, we are overcounting by a factor of 3! and for the 𝑂’s, we are overcounting by a factor of 2!. 

So our answer is 
7!

3!2!
. 

 

In full generality: Suppose there are 𝑛 objects, but only 𝑘 are distinct, with 𝑘 ≤ 𝑛.  (For example, 

“godoggy” has 𝑛 = 7 objects [characters] but 𝑘 = 4 distinct objects, {𝑔, 𝑜, 𝑑, 𝑦}).  Let 𝑛𝑖  for 𝑖 = 1, … , 𝑘 

be the number of times object 𝑖 appears.  (For example, {𝑛1 = 3, 𝑛2 = 2, 𝑛3 = 1, 𝑛4 = 1} continuing 

the “godoggy” example).  The number of ways to arrange the 𝑛 objects is then 
 

𝑛!

𝑛1! 𝑛2! … . 𝑛𝑘!
= (

𝑛

𝑛1, 𝑛2, … , 𝑛𝑘
) 
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Multinomial Theorem: Let 𝑥1, … , 𝑥𝑚 ∈ ℝ, 𝑛 ∈ ℕ.  

(𝑥1 + ⋯ + 𝑥𝑚)𝑛 = ∑ (
𝑛

𝑘1, … , 𝑘𝑚
) ∏ 𝑥𝑡

𝑘𝑡

𝑚

𝑡=1𝑘1+⋯+𝑘𝑚=𝑛
𝑘1,…,𝑘𝑚≥0

 

 
The multinomial theorem is a generalization of the binomial theorem. The multinomial coefficient and 
theorem will be useful later when we talk about the multinomial distribution, and it generalizes our 

previous example about counting the number of ways to walk from the origin to some point in ℝ2 to ℝ𝑚. 
 

2 Graphs  
 

A graph 𝐺 = (𝑉, 𝐸) is a collection of vertices 𝑉 = {𝑣1, … , 𝑣𝑛} and edges 𝐸 = {𝑒1, … , 𝑒𝑚}. We 

typically have |𝑉| = 𝑛 and |𝐸| = 𝑚. A directed graph is one in which the edges 𝑒𝑖 = (𝑣𝑗 , 𝑣𝑘) are 

ordered pairs – that is, the edge goes from 𝑣𝑗  to 𝑣𝑘. An undirected graph is one in which the edges 

𝑒𝑖 = {𝑣𝑗 , 𝑣𝑘} are sets of two vertices, in which there is an undirected edge between 𝑣𝑗  and 𝑣𝑘 (note that 
this definition does not allow for self-loops). Here we will only consider undirected graphs. 
 

Exercise: Suppose 𝐺 is an undirected graph on the vertex set 𝑉, where |𝑉| = 𝑛.  How many different 

graph structures are there? Graph 𝐺1 = (𝑉, 𝐸1) is different from 𝐺2 = (𝑉, 𝐸2) (with the same vertex set 

𝑉) if and only if 𝐸1 ≠ 𝐸2. 

Solution: There are (𝑛
2

) possible edges – one for each pair of distinct vertices. For each edge, there are 

two possibilities: it is either in the graph or not. So there are 2(𝑛
2) different graph structures. 

 

We denote 𝐾𝑛 as the complete (undirected) graph on 𝒏 vertices, which has all (𝑛
2
) edges present. 

We denote 𝐶𝑛 as the cycle on 𝒏 vertices, which has exactly 𝑛 edges when 𝑛 ≥ 3. 
 

Define a clique in a graph 𝐺 = (𝑉, 𝐸) as a subset of vertices 𝑈 ⊆ 𝑉 in which all vertices of 𝑈 are 

connected ( (|𝑈|
2

) edges). Define an independent set in a graph 𝐺 = (𝑉, 𝐸) as a subset of vertices 𝑈 ⊆

𝑉 in which there is no edge present between any two vertices of 𝑈. A 𝒌-clique is a clique of size 𝑘 (in 

terms of vertices). An 𝓵-independent set is an independent set of size ℓ. 
 

Define 𝜔(𝐺) = max{|𝐴|: 𝐴 ⊆ 𝑉, 𝐴 is a clique in G}, the size of the largest clique in 𝐺. We call 𝜔(𝐺) 

the clique number of 𝑮. Define 𝛼(𝐺) = max{|𝐵|: 𝐵 ⊆ 𝑉, 𝐵 is an independent set in G}, the size 

of the largest independent set in 𝐺. We call 𝛼(𝐺) the independence number of 𝑮. 
 

Exercise: Find 𝜔(𝐺) and 𝛼(𝐺) for the following graphs: 𝐺 = 𝐾𝑛, 𝐺 = 𝐶5. 

Solution: 𝜔(𝐾𝑛) = 𝑛 and 𝛼(𝐾𝑛) = 1 since all edges are present. 𝜔(𝐶5) = 𝛼(𝐶5) = 2 (draw a 
picture). 
 

Define 𝒩(𝑈), where 𝑈 ⊆ 𝑉 to be all vertices which are connected by an edge to some vertex of 𝑈. We 

call 𝒩(𝑈) the neighbors or neighboring set of 𝑈.  So if 𝑈 = {𝑣} the singleton set with one vertex, 

𝒩({𝑣}) = {𝑢: {𝑢, 𝑣} ∈ 𝐸}. 
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3 Ramsey Theory 
 
Ramsey Theory is a very important generalization of the pigeonhole principle. 
Very informally, Ramsey’s Theorem says that for an arbitrary graph that is “large enough”, it will contain at 
least either a large clique or a large independent set (or both). 
 

Ramsey’s Theorem (for graphs): Let 𝑘, ℓ ∈ ℕ and let 𝐺 = (𝑉, 𝐸) be an arbitrary graph with at least 

(𝑘+ℓ−2
𝑘−1

) vertices. Then 𝜔(𝐺) ≥ 𝑘 or 𝛼(𝐺) ≥ ℓ. 

Proof: Not given 

Ramsey’s Theorem implies that there exists some 𝑁 such that all graphs with 𝑁 vertices have at least a 

clique of size 𝑘 or an independent set of size ℓ. Define 𝑟(𝑘, ℓ) to be the smallest such value of 𝑁 (the 𝑟 is 

for Ramsey). In other words, 𝑟(𝑘, ℓ) is the smallest value such that any graph with 𝑟(𝑘, ℓ) vertices has a 

𝑘-clique or an ℓ-independent set (or both). 
 

Exercise: Show that 𝑟(3,3) = 6. That is, any graph on 6 vertices has a 3-clique or 3-independent set. 

Solution: We need to show that 𝑟(3,3) ≥ 6 and 𝑟(3,3) ≤ 6. To show the former, consider 𝐶5. Recall 

that 𝜔(𝐶5) = 𝛼(𝐶5) = 2, so 𝐶5 is a graph on 5 vertices with no 3-clique nor 3-independent set. Now to 

show that 𝑟(3,3) ≤ 6, let 𝐺 be any graph on 6 vertices {𝑣1, … , 𝑣6}. Consider 𝑣1 – by the pigeonhole 

principle, it has either at least 3 neighbors or at least 3 non-neighbors. 

Case 1: |𝒩({𝑣1})| ≥ 3 (at least 3 neighbors) 

Take any 3 of the neighbors, say {𝑣2, 𝑣3, 𝑣4} WLOG (without loss of generality). If there are no edges 

between these three edges, then they form an independent set of size 3. If there is even one edge between 

these three edges, say again WLOG {𝑣2, 𝑣3}, then {𝑣1, 𝑣2, 𝑣3} form a clique of size 3. 

Case 2: |𝒩({𝑣1})| ≤ 2 (at least 3 non-neighbors) 

Take any 3 of the non-neighbors, say {𝑣2, 𝑣3, 𝑣4} again WLOG. If all edges are present between them, 

then {𝑣2, 𝑣3, 𝑣4} form a 3-clique. If there is even one edge missing, say between {𝑣2, 𝑣3} WLOG, then 

{𝑣1, 𝑣2, 𝑣3} has no edges between them and form a 3-independent set. 
 

Q.E.D.  
 

Exercise: What is 𝑟(𝑘, 2)? 

Solution: 𝑟(𝑘, 2) = 𝑘. If 𝐺 = 𝐾𝑘−1, then 𝐺 has a clique of size 𝑘 − 1 but not 𝑘, and has no 

independent set of size 2, so 𝑟(𝑘, 2) > 𝑘 − 1. Now consider any graph on 𝑘 vertices. If 𝐺 = 𝐾𝑘, 𝐺 has a 

clique of size 𝑘. Otherwise, there is at least one edge missing, saying from {𝑣1, 𝑣2} and then those two 
vertices form an independent set. 
 

This is currently an open problem in combinatorics! We know the values of 𝑟(4,3) and 𝑟(4,4), but no one 

yet knows what 𝑟(5,5) and 𝑟(4,6) are. 
 

Theorem (Generalized Ramsey’s): Let 𝑚 ≥ 2 and 𝑘1, … , 𝑘𝑚 ∈ ℕ. Then there exists some minimum 

number 𝑁 = 𝑟(𝑘1, … , 𝑘𝑚) such that if we color all edges of 𝐾𝑁 with colors 1,2, … , 𝑚, then there will 

always exist either: a subgraph 𝐾𝑘1
 all of whose edges are of color 1, a subgraph 𝐾𝑘2

 all of whose edges are 

of color 2, etc. 



Tsun 4 
 

Exercise: Show that 𝑟(3,3,2) = 6. That is, if we color edges of 𝐾6 in three colors, say red, green, and 

blue, there will be a red 3-clique, a green 3-clique, or a blue 2-clique. 

Solution: First we show that 𝑟(3,3,2) > 5. Again, consider 𝐶5 alternating colors red and green. Then 

there is neither a red 3-clique, a green 3-clique, nor a blue 2-clique. If there is any blue edge at all, say 

between 𝑣1 and 𝑣2, then those two vertices form a blue 2-clique and we are done. Otherwise, all edges of 

𝐺 are red or green. Since 𝑟(3,3) = 6, there exists either a red 3-clique or a green 3-clique and we are 
done.   
 

The Ramsey number 𝑟(𝑘, ℓ) gives the solution to the party problem: what is the minimum number of 

guests that we need to invite to a party such that either 𝑘 of them all know each other or ℓ of them all don’t 
know each other? 
 
This is fascinating in computer science as well – because we work with graphs a lot – and this guarantees in 
sufficiently large (and probably confusing) graphs, we can find some structure (large cliques/independent 
sets)! 
 
Ramsey Theory has lots of applications, both in computer science and mathematics. If you are interested, 
here is where you can find some: http://www.cs.umd.edu/~gasarch/TOPICS/ramsey/ramsey.html. 
  

4 Proofs By Counting 
 

Recall that the power set of a set 𝑋 is 𝒫(𝑋), the set of all subsets of 𝑋. 

Let 𝑋 be any set – define the notation (𝑋
𝑘

) = {𝐴 ∈ 𝒫(𝑋): |𝐴| = 𝑘}, the set of all subsets of 𝑋 of size 𝑘. 

 

Consider a finite set 𝑋 and family (set) of subsets ℱ = {𝐹1, … , 𝐹𝑚} ⊆ (𝑋
𝑘

) of 𝑘-subsets of 𝑋. We say that 

ℱ is two-colorable if there exists a coloring of elements of 𝑋 in (say red and blue) such a way that no set 

𝐹𝑖  is monochromatic (that is, consists of elements of the same color). 
 

Exercise: Let 𝑋 = {1,2,3}. Let ℱ1 = {{1,2}, {1,3}} and ℱ2 = {{1,2}, {2,3}, {1,3}}. Is ℱ1 two-

colorable? Is ℱ2? 

Solution: ℱ1 is two-colorable – color 1 red and 2,3 blue. ℱ2 is not. If 1 is red, then 2 has to be blue 

because of the first subset {1,2}. Because of the second {2,3}, 3 must be red. But then {1,3} is 
monochromatic (all red).  
 

By the exercise, it seems like if ℱ is too large, it may not be two-colorable. 
 

Lemma (Union Bound): Let 𝐴1, … , 𝐴𝑛 be finite sets. Then |𝐴1 ∪ … ∪ 𝐴𝑛| ≤ ∑ |𝐴𝑖|
𝑛
𝑖=1 .  

 

Theorem (Erdos): If ℱ = {𝐹1, … , 𝐹𝑚} is a family of 𝑘-element subsets of 𝑋 and if 𝑚 < 2𝑘−1, then ℱ is 
two-colorable. 

Proof: Let Ω be the set of all two-colorings of 𝑋 in red and blue. Then |Ω| = 2|𝑋|. (Ex. If 𝑋 = {1,2}, 

then Ω = {𝑟𝑟, 𝑟𝑏, 𝑏𝑟, 𝑏𝑏}). We want to avoid colorings that make one of the 𝐹𝑖’s monochromatic. For 

𝑗 = 1, … , 𝑚, let 𝐴𝑗
𝑟𝑒𝑑 = {𝑐 ∈ Ω: 𝑐 assigns color red to all elements of 𝐹𝑗}. Define 𝐴𝑗

𝑏𝑙𝑢𝑒 similarly.  

http://www.cs.umd.edu/~gasarch/TOPICS/ramsey/ramsey.html
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Notice that the “bad” sets (the ones that make at least one of the 𝐹𝑖’s monochromatic) are precisely 
described by the set: 

⋃(𝐴𝑗
𝑟𝑒𝑑 ∪ 𝐴𝑗

𝑏𝑙𝑢𝑒)

𝑚

𝑗=1

 

 

So we are done if we show the following: |⋃ (𝐴𝑗
𝑟𝑒𝑑 ∪ 𝐴𝑗

𝑏𝑙𝑢𝑒)𝑚
𝑗=1 | < |Ω|. We would be done since then 

there would be some coloring in Ω which doesn’t assign all elements of any 𝐹𝑗  to the same color.  

 

Notice that |𝐴𝑗
𝑟𝑒𝑑| = 2|𝑋|−𝑘 since all 𝑘 elements of 𝐹𝑗 are red, and we have 2 choices for the other |𝑋| −

𝑘 elements in 𝑋\𝐹𝑗. Similarly, |𝐴𝑗
𝑏𝑙𝑢𝑒| = 2|𝑋|−𝑘. 

 
So  

|⋃(𝐴𝑗
𝑟𝑒𝑑 ∪ 𝐴𝑗

𝑏𝑙𝑢𝑒)

𝑚

𝑗=1

| ≤ ∑ 2 ∙ 2|𝑋|−𝑘

𝑚

𝑗=1

 [𝑢𝑛𝑖𝑜𝑛 𝑏𝑜𝑢𝑛𝑑] 

= 2𝑚 ∙ 2|𝑋|−𝑘 < 2 ∙ 2𝑘−1 ∙ 2|𝑋|−𝑘 [𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑚 < 2𝑘−1] 

= 2|𝑋| = |Ω| 
 

Q.E.D. 
 
Usually to prove existence of something, we need to construct it. This is a very interesting technique 
because we can show existence of something by counting instead of construction! 
 

5 Conclusion 
 
CSE 312 only covers combinatorial analysis in the beginning, as a way to start thinking about probability. 
However, even with one week of basic combinatorics, we were able to discuss Ramsey Theory and the 
Proofs by Counting! Hopefully you can see that the study of combinatorics is interesting and relevant to 
both probability and computer science. In the future, you will see even more how probability can be 
applied in computer science: most prominently in machine learning, artificial intelligence, and to make 
algorithms more efficient, even in other subfields you may not expect! 
 

6 Acknowledgements 
 
Thanks to Martin Tompa for helping me arrange these weekly lectures, and to Isabella Novik for the use of 
lecture notes in making these notes! 


