Review of Important Distributions

1. Discrete

2. Continuous

Discrete Random Variables

Discrete Uniform Distribution

Definition: A random variable that takes any integer value in an interval with equal likelihood

Example: Choose an integer uniformly between 0 and 10
Parameters: integers a, b (lower and upper bound of interval)
Notation: $X \sim \operatorname{Unif}(a, b)$
Properties:
$\mathrm{E}[\mathrm{X}]=\frac{a+b}{2}$
$\operatorname{Var}(\mathrm{X})=\frac{(b-a)(b-a+2)}{12}$
pmf: $\mathrm{P}(X=k)=\frac{1}{b-a+1}$ if $k \in[a, b], 0$ otherwise

Bernoulli Distribution

Definition: value 1 with probability $p, 0$ with probability $1-p$
Example: coin toss ($p=1 / 2$ for fair coin)
Parameters: p
Notation: $X \sim \operatorname{Ber}(p)$
Properties:
$\mathrm{E}[\mathrm{X}]=p$
$\operatorname{Var}(\mathrm{X})=p(1-p)$

Binomial Distribution

Definition: sum of n independent Bernoulli trials, each with parameter p

Example: number of heads in 10 independent coin tosses
Parameters: n, p
Notation: $X \sim \operatorname{Bin}(n, p)$
Properties:
$\mathrm{E}[\mathrm{X}]=n p$
$\operatorname{Var}(\mathrm{X})=n p(1-p)$
pmf: $\mathrm{P}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}$

Poisson Distribution

Definition: number of events that occur in a unit of time, if those events occur independently at an average rate λ per unit time

Example: \# of cars at traffic light in 1 minute, \# of deaths in 1 year by horse kick in Prussian cavalry

Parameters: λ
Notation: $X \sim \operatorname{Poi}(\lambda)$
Properties:
$\mathrm{E}[\mathrm{X}]=\lambda$
$\operatorname{Var}(\mathrm{X})=\lambda$
pmf: $\quad \mathrm{P}(X=k)=\frac{\lambda^{k}}{k!} e^{-\lambda}$

Geometric Distribution

Definition: number of independent Bernoulli trials with parameter p until and including first success (so X can take values $1,2,3, \ldots$)

Example: \# of coins flipped until first head
Parameters: p
Notation: $X \sim \operatorname{geo}(p)$
Properties:
$\mathrm{E}[\mathrm{X}]=\frac{1}{p}$
$\operatorname{Var}(\mathrm{X})=\frac{1-p}{p^{2}}$
pmf: $\mathrm{P}(X=k)=(1-p)^{k-1} p$

Hypergeometric Distribution

Definition: number of successes in n draws (without replacement) from N items that contain K successes in total

Example: An urn has 10 red balls and 10 blue balls. What is the probability of drawing 2 red balls in 4 draws?

Parameters: n, N, K

Properties:

$\mathrm{E}[\mathrm{X}]=n \cdot \frac{K}{N}$
$\operatorname{Var}(\mathrm{X})=n \cdot \frac{K(N-K)(N-n)}{N^{2}(N-1)}$
pmf: $\quad \mathrm{P}(X=k)=\frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}$

Think about the pmf; we've been doing it for weeks now: ways-to-choose-successes times ways-to-choose-failures divided by ways-to-choose-all.

Also, consider that the binomial dist. is the withreplacement analog of this.

Continuous Random Variables

Continuous Uniform Distribution

Definition: A random variable that takes any real value in an interval with equal likelihood

Example: Choose a real number (with infinite precision) between 0 and 10

Parameters: a, b (lower and upper bound of interval)
Notation: $X \sim \operatorname{Uni}(a, b)$
Properties:
$\mathrm{E}[\mathrm{X}]=\frac{a+b}{2}$
$\operatorname{Var}(\mathrm{X})=\frac{(b-a)^{2}}{12}$
pdf: $f(x)=\frac{1}{b-a}$ if $x \in[a, b], 0$ otherwise

Exponential Distribution

Definition: Time until next event in Poisson process
Example: How long until the next soldier is killed by horse kick?
Parameters: λ, the average number of events per unit time
Notation: $X \sim \operatorname{Exp}(\lambda)$
Properties:
$\mathrm{E}[\mathrm{X}]=\frac{1}{\lambda}$
$\operatorname{Var}(\mathrm{X})=\frac{1}{\lambda^{2}}$

pdf: $f(x)=\lambda e^{-\lambda x}$ for $x \geq 0, \quad 0$ for $x<0$

Normal Distribution

Description: Classic bell curve
Example: Quantum harmonic oscillator ground state (exact), Human heights, binomial random variables (approximate)

Parameters: μ, σ^{2}
Notation: $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$
Properties:
$\mathrm{E}[\mathrm{X}]=\mu$
$\operatorname{Var}(\mathrm{X})=\sigma^{2}$
pdf: $f(x)=\frac{1}{\sqrt{\left(2 \pi \sigma^{2}\right)}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}}$

