Note on the hypergeometric distribution

November 3, 2016

Consider an urn with \(N \) balls, of which \(m \) are white, the rest are black. Suppose that \(n \) random balls are removed without replacement, and let \(X \) be the number of white balls drawn. (In the below, we will assume that \(n \leq m, N - m \). Handling the other case, follows similar arguments.

\(X \) is a hypergeometric random variable with parameters \((N, m, n)\). The probability mass function of \(X \) is

\[
Pr(X = i) = \frac{\binom{m}{i} \binom{N-m}{n-i}}{\binom{N}{n}}.
\]

Observe that

\[
\sum_{i=0}^{n} Pr(X = i) = \sum_{i=0}^{n} \frac{\binom{m}{i} \binom{N-m}{n-i}}{\binom{N}{n}} = 1. \tag{0.1}
\]

Expectation of a hypergeometric r.v.

We write \(X \) as a sum of \(n \) random variables \(X_1 + X_2 + \ldots + X_n \) where \(X_k \) is an indicator r.v. which is 1 if the \(k \)-th ball drawn is white and 0 otherwise.

We claim that for each \(k \in [1, n] \),

\[
E(X_k) = \frac{m}{N}, \tag{0.2}
\]

and therefore, by linearity of expectation

\[
E(X) = n \cdot \frac{m}{N}.
\]

We can prove (0.2) several ways.

- Informal proof: If we pick one ball at random out of the urn, the probability it is white is \(m/N \). We claim that this is also true if we consider the fifth ball removed (or any ball). Why? Because consider a sequence of \(n \) balls removed from the urn one at a time. Each permutation of these balls is equally likely. Therefore if the first ball is white with probability \(m/N \), then the \(k \)-th ball is also white with the same probability. Therefore, we have (0.2).
• Formal proof:

\[E(X_k) = Pr(k\text{-th ball is white}) \]

\[= \sum_{i=0}^{k-1} Pr(k\text{-th ball is white} | i \text{ of the first } k - 1 \text{ balls white}) Pr(i \text{ of first } k - 1) \]

\[= \sum_{i=0}^{k-1} \frac{(m-i)}{N-k+1} \cdot \frac{\binom{m}{i} \binom{N-m}{k-1-i}}{\binom{N}{k-1}} \]

and since \((m-i) \binom{m}{i} = \frac{m!}{i!(m-i)!} = m \binom{m-1}{i} \), and similarly \((N-k+1) \binom{N}{k-1} = N \binom{N-1}{k-1} \), we have

\[= \frac{m}{N} \sum_{i=0}^{k-1} \frac{(m-1) \binom{N-m}{k-1-i}}{\binom{N-1}{k-1}} \]

but this sum is 1 by (0.1) applied to a hypergeometric with parameters \((N-1, m-1, k-1) \), so we get that

\[E(X_k) = \frac{m}{N} \]