Midterm Review

coverage

everything in text chapters 1-2, slides \& homework pre-exam (except "continuous random variables," started last week) is included, except as noted below.

mechanics

closed book; 1 page of notes ($8.5 \times 11, \leq 2$ sides, handwritten)

I'm more interested in setup and method than in numerical answers, so concentrate on giving a clear approach, perhaps including a terse English outline of your reasoning.
Corollary: calculators are probably irrelevant, but I will send email to the class list tomorrow with final word on whether they are (dis-)allowed
counting principle (product rule)
permutations
combinations
indistinguishable objects
binomial coefficients
binomial theorem

partitions \& multinomial coefficients

inclusion/exclusion
pigeon hole principle
sample spaces \& events
axioms
complements, Venn diagrams, deMorgan, mutually exclusive events, etc.
equally likely outcomes

chapter 1: conditional probability and independence

conditional probability
chain rule, aka multiplication rule
total probability theorem
Bayes rule yes, learn the formula
odds (and prior/posterior odds form of Bayes rule) independence
conditional independence
gambler's ruin
discrete random variables
probability mass function (pmf)
expectation of X
expectation of $g(X)$ (i.e., a function of an r.v.)
linearity: expectation of $\mathrm{X}+\mathrm{Y}$ and $\mathrm{aX}+\mathrm{b}$
variance
cumulative distribution function (cdf)
cdf as sum of pmf from - -
independence; joint and marginal distributions important examples:
uniform, bernoulli, binomial, poisson, geometric

some important (discrete) distributions

$$
\begin{array}{lllll}
\text { Name } & P M F & E[k] & E\left[k^{2}\right] & \sigma^{2} \\
\hline \text { Uniform }(a, b) & f(k)=\frac{1}{(b-a+1)}, k=a, a+1, \ldots, b & \frac{a+b}{2} & \frac{(b-a+1)^{2}-1}{12} \\
\text { Bernoulli(} p) & f(k)=\left\{\begin{array}{lll}
1-p & \text { if } k=0 \\
p & \text { if } k=1
\end{array}\right. & p & p & p(1-p) \\
\text { Binomial }(p, n) & f(k)=\binom{n}{k} p^{k}(1-p)^{n-k}, k=0,1, \ldots, n & n p & & n p(1-p) \\
\text { Poisson }(\lambda) & f(k)=e^{-\lambda \frac{\lambda^{k}}{k!}, k=0,1, \ldots} & \lambda & \lambda(\lambda+1) & \lambda \\
\text { Geometric }(p) & f(k)=p(1-p)^{k-1}, k=1,2, \ldots & \frac{1}{p} & \frac{2-p}{p^{2}} & \frac{1-p}{p^{2}} \\
\begin{array}{ll}
\text { Hypergeomet- } \\
\text { ric }(n, N, m)
\end{array} & f(k)=\frac{\binom{m}{k}\binom{N-m}{n-k}}{\binom{N}{n}}, k=0,1, \ldots, N & \frac{n m}{N} & & \frac{n m}{N}\left(\frac{(n-1)(m-1)}{N-1}+1-\frac{n m}{N}\right)
\end{array}
$$

See also the summary in B\&T following pg 528

Calculus is a prereq, but l'd suggest the most important parts to brush up on are:
taylor's series for e^{x}
sum of geometric series: $\Sigma_{i \geq 0} x^{i}=1 /(1-x)(0 \leq x<1)$
Tip: multiply both sides by ($1-\mathrm{x}$)
$\sum_{i \geq 1} i x^{i-1}=1 /(1-x)^{2}$
Tip1: slide \# ~13 in "random variables" lecture notes, or text
Tip2: if it were $\Sigma_{i \geq 1} \mathrm{ix}^{i+1}$, say, you could convert to the above form by dividing by x^{2} etc.; 1st few terms may be exceptions
integrals \& derivatives of polynomials, e^{x};
chain rule for derivatives; integration by parts

Good Luck!

