CSE 312, Spring 2015, W.L.Ruzzo

14. hypothesis testing

I

Programmers using the Eclipse IDE make fewer errors

- (a) Hooey. Errors happen, IDE or not.
- (b) Yes. On average, programmers using Eclipse produce code with fewer errors per thousand lines of code

Black Tie Linux has way better web-server throughput than Red Shirt.

- (a) Ha! Linux is linux, throughput will be the same
- (b) Yes. On average, Black Tie response time is 20% faster.

This coin is biased!

- (a) "Don't be paranoid, dude. It's a fair coin, like any other, P(Heads) = 1/2"
- (b) "Wake up, smell coffee: P(Heads) = 2/3, totally!"

(a) Ibsoff.com sells diet pills. 10 volunteers used them for a month, reporting the net weight changes of:

x <- c(-1.5, 0, .1, -0.5, -.25, 0.3, .1, .05, .15, .05)
> mean(x)
[1] -0.15

Ibsoff proudly announces "Diet Pill Miracle! See data!" -

(b) Dr. Gupta says "Bunk!"

Does smoking cause^{*} lung cancer?

- (a) No; we don't know what causes cancer, but smokers are no more likely to get it than nonsmokers
- (b) Yes; a much greater % of smokers get it

*Notes: (1) even in case (b), "cause" is a stretch, but for simplicity, "causes" and "correlates with" will be loosely interchangeable today. (2) we really don't know, in mechanistic detail, what causes lung cancer, nor how smoking contributes, but the *statistical* evidence strongly points to smoking as a key factor.

Our question: How to do the statistics?

How do we decide?

Design an experiment, gather data, evaluate:

- In a sample of N smokers + non-smokers, does % with cancer differ? Age at onset? Severity?
- In N programs, some written using IDE, some not, do error rates differ?
- Measure response times to N individual web transactions on both.
- In N flips, does putatively biased coin show an unusual excess of heads? More runs? Longer runs?

A complex, multi-faceted problem. Here, emphasize evaluation: What N? How large of a difference is convincing?

General framework:

- I. Data
- 2. H_0 the "null hypothesis"
- 3. H_1 the "alternate hypothesis"
- 4. A decision rule for choosing between H₀/H₁ based on data
- 5. Analysis: What is the probability that we get the right answer?

Example: 100 coin flips P(H) = 1/2 P(H) = 2/3"if #H \leq 60, accept null, else reject null" $P(H \leq 60 | 1/2) = ?$ P(H > 60 | 2/3) = ?

By convention, the null hypothesis is usually the "simpler" hypothesis, or "prevailing wisdom." E.g., Occam's Razor says you should prefer that, unless there is *strong* evidence to the contrary.

Goal: make both α , β small (but it's a tradeoff; they are interdependent). $\alpha \leq 0.05$ common in scientific literature.

Is coin fair (1/2) or biased (2/3)? How to decide? Ideas:

- I. Count: Flip 100 times; if number of heads observed is \leq 60, accept H₀ or \leq 59, or \leq 61 ... \Rightarrow different error rates
- 2. Runs: Flip 100 times. Did I see a longer run of heads or of tails?
- 3. Runs: Flip until I see either 10 heads in a row (reject H_0) or 10 tails is a row (accept H_0)
- 4. Almost-Runs: As above, but 9 of 10 in a row5. ...

Limited only by your ingenuity and ability to analyze. But how will you optimize Type I, II errors? A generic decision rule: a "Likelihood Ratio Test"

$$\frac{L(x_1, x_2, \dots, x_n \mid H_1)}{L(x_1, x_2, \dots, x_n \mid H_0)} :: c \quad \begin{cases} < c & \text{accept } H_0 \\ = c & \text{arbitrary} \\ > c & \text{reject } H_0 \end{cases}$$

E.g.:

- c = I: accept H_0 if observed data is *more* likely under that hypothesis than it is under the alternate, but reject H_0 if observed data is more likely under the *alternate*
- c = 5: accept H₀ unless there is strong evidence that the alternate is more likely (i.e., 5×)

Changing c shifts balance of Type I vs II errors, of course

Given: A coin, either fair (p(H)=1/2) or biased (p(H)=2/3)Decide: which

How? Flip it 5 times. Suppose outcome D = HHHTH Null Model/Null Hypothesis $M_0: p(H) = 1/2$ Alternative Model/Alt Hypothesis $M_1: p(H) = 2/3$

Likelihoods:

 $P(D | M_0) = (1/2) (1/2) (1/2) (1/2) (1/2) = 1/32$

 $P(D | M_1) = (2/3) (2/3) (2/3) (1/3) (2/3) = 16/243$

Likelihood Ratio:
$$\frac{p(D \mid M_1)}{p(D \mid M_0)} = \frac{16/243}{1/32} = \frac{512}{243} \approx 2.1$$

I.e., alt model is $\approx 2.1 \times$ more likely than null model, given data

more jargon: simple vs composite hypotheses

A simple hypothesis has a single, fixed parameter value E.g.: P(H) = 1/2

A *composite* hypothesis allows multiple parameter values

E.g.; P(H) > 1/2

Note that LRT is problematic for composite hypotheses; which value for the unknown parameter would you use to compute its likelihood?

The Neyman-Pearson Lemma

If an LRT for a simple hypothesis H₀ versus a simple hypothesis H₁ has error probabilities α , β , then any test with type I error $\alpha' \leq \alpha$ must have type II error $\beta' \geq \beta$ (and if $\alpha' < \alpha$, then $\beta' > \beta$)

In other words, to compare a simple hypothesis to a simple alternative, a likelihood ratio test *is as good as any* for a given error bound.

$$\begin{array}{l|l} H_0: P(H) = 1/2 & Data: flip 100 times \\ H_1: P(H) = 2/3 & Decision rule: Accept H_0 if \#H \leq 60 \\ \hline \alpha = P(Type \ I \ err) = P(\#H > 60 \ | \ H_0) \approx 0.018 \\ \hline \beta = P(Type \ II \ err) = P(\#H \leq 60 \ | \ H_1) \approx 0.097 \end{array}$$

$$\frac{L(59 \text{ heads } \mid H_1)}{L(59 \text{ heads } \mid H_0)} \approx 1.4; \frac{L(60 \text{ heads } \mid H_1)}{L(60 \text{ heads } \mid H_0)} \approx 2.8; \frac{L(61 \text{ heads } \mid H_1)}{L(61 \text{ heads } \mid H_0)} \approx 5.7$$

$$\frac{L(60 \text{ heads } \mid H_1)}{L(60 \text{ heads } \mid H_0)} = \frac{\text{dbinom}(60,100,2/3)}{\text{dbinom}(60,100,1/2)} \approx 2.835788$$

$$\frac{L(60 \text{ heads } \mid H_1)}{L(60 \text{ heads } \mid H_0)} \approx \frac{\text{dnorm}(60,100 \cdot 2/3,\sqrt{100 \cdot 2/3 \cdot 1/3})}{\text{dnorm}(60,100 \cdot 1/2,\sqrt{100 \cdot 1/2 \cdot 1/2})} \approx 2.883173_{15}$$

example (cont.)

Number of Heads

Log of likelihood ratio is equivalent, often more convenient

add logs instead of multiplying...

"Likelihood Ratio Tests": reject null if LLR > threshold

LLR > 0 disfavors null, but higher threshold gives stronger evidence against

Neyman-Pearson Theorem: For a given error rate, LRT is as good a test as any (subject to some fine print).

Null/Alternative hypotheses - specify distributions from which data are assumed to have been sampled

Simple hypothesis - one distribution

```
E.g., "Normal, mean = 42, variance = 12"
```

Composite hypothesis - more that one distribution

E.g., "Normal, mean \geq 42, variance = 12"

Decision rule; "accept/reject null if sample data..."; many possible

Type I error: false reject/reject null when it is true

Type 2 error: false accept/accept null when it is false

Balance $\alpha = P(type \mid error) \text{ vs } \beta = P(type \mid 2 error) \text{ based on "cost" of each$

Likelihood ratio tests: for simple null vs simple alt, compare ratio of likelihoods under the 2 competing models to a fixed threshold.

Neyman-Pearson: LRT is best possible in this scenario.

Significance Testing B&T 9.4

2 competing hypotheses H_0 (the *null*), H_1 (the *alternate*)

E.g., P(Heads) = $\frac{1}{2}$ vs P(Heads) = $\frac{2}{3}$

Gather data, X

Look at likelihood ratio $\frac{L(X|H_1)}{L(X|H_0)}$; is it > c?

Type I error/false reject rate α ;

Type II error/false non-reject rate β

Neyman-Pearson Lemma: no test will do better (for simple hyps)

Often the likelihood ratio formula can be massaged into an equivalent form that's simpler to use, e.g.

"Is #Heads > d?"

Other tests, not based on likelihood, are also possible, say

"Is hyperbolic arc sine of #Heads in prime positions > 42?" but Neyman-Pearson still applies... What about more general problems, e.g. with *composite* hypotheses?

E.g., P(Heads) = $\frac{1}{2}$ vs P(Heads) not = $\frac{1}{2}$

NB: LRT won't work – can't calculate likelihood for " $p \neq \frac{1}{2}$ "

Can I get a more nuanced answer than accept/reject?

General strategy:

Gather data, X_1, X_2, \ldots, X_n

Choose a real-valued summary statistic, $S = h(X_1, X_2, ..., X_n)$

Choose shape of the rejection region, e.g. $R = \{X \mid S > c\}, c t.b.d.$

Choose significance level α (upper bound on false rejection prob)

Find critical value c, so that, assuming H_0 , $P(S>c) < \alpha$

No Neyman-Pearson this time, but (assuming you can do or approximate the math for last step) you now know the significance of the result – i.e., probability of falsely rejecting the null model.

I have a coin. Is $P(\text{Heads}) = \frac{1}{2}$ or not?

```
General strategy:
```

Gather data, X_1, X_2, \ldots, X_n

Choose a real-valued summary statistic, $S = h(X_1, X_2, ..., X_n)$

Choose shape of the rejection region, e.g. $R = \{X \mid S > c\}$, c t.b.d.

Choose significance level α (upper bound on false rejection prob)

Find critical value c, so that, assuming H_0 , $P(S>c) < \alpha$

For this example:

Flip n = 1000 times: $X_1, ..., X_n$

Summary statistic, S = # of heads in $X_1, X_2, ..., X_n$

Shape of the rejection region: $R = \{ X \text{ s.t. } |S-n/2| > c \}, c t.b.d.$

Choose significance level $\alpha = 0.05$

Find critical value c, so that, assuming H_0 , $P(|S-n/2| > c) < \alpha$

Given H_0 , (S-n/2)/sqrt(n/4) is \approx Norm(0,1), so c = 1.96* $\sqrt{250} \approx 31$ gives the desired 0.05 significance level.

E.g., if you see 532 heads in 1000 flips you can reject $H_{\rm 0}$ at the 5% significance level

The *p*-value of an experiment is:

 $p = min \{ \alpha \mid H_0 \text{ would be rejected at the } \alpha \text{ significance level } \}$

I.e., observed S is right at the critical value for $\alpha = p$

I.e., p = prob of outcome as, or more, unexpected than observed Why?

Shows directly your leeway w.r.t. any desired significance level.

Avoids pre-setting the significance level (pro/con)

Examples:

531 heads in 1000 flips has a p-value of 0.0537, $> \alpha = 0.05$ 532 heads in 1000 flips has a p-value of 0.0463, $< \alpha = 0.05$ 550 heads in 1000 flips has a p-value of 0.00173, $\ll \alpha = 0.05$ *it is or it isn't*

It is not the probability that the null hypothesis is true It's the probability of seeing data this extreme, assuming null is true Suppose X ~ Normal(μ , σ^2), and σ^2 is *known*.

 $H_0: \mu = 0 \quad vs \quad H_1: \mu \neq 0$

Data: X_1, X_2, \ldots, X_n

Summary statistic – want something related to mean; how about:

$$S = \frac{X_1 + X_2 + \dots + X_n}{\sigma\sqrt{n}}$$

(assuming H_0 , ΣX_i has mean = 0, var = n σ^2 , so S ~ N(0, I))

If we make rejection region R = { X s.t. |S| > 1.96 }, this will reject the null at the α = 0.05 significance level. I.e., assuming μ = 0, an extreme sample with |S| > 1.96 will be drawn only 5% of the time.

Similarly, if we observe S = 2.5, say, then p-value = 0.0124

example: the t-test: is the mean zero or not (σ^2 unknown)?

Suppose X ~ Normal(μ , σ^2), and σ^2 is *un*known.

to obtain α = 0.05 significance level. E.g., n=10, S=3.25 \Rightarrow p-value = 0.01

The "t-test"

α/2

		0.10	0 0.050	0.025	0.010	0.005	0.001
		1 3.07	8 6.314	12.71	31.82	63.66	318.3
	1 :	2 1.886	6 2.920	4.303	6.965	9.925	22.33
	3	3 1.638	3 2.353	3.182	4.541	5.841	10.21
	4	1.533	3 2.132	2.776	3.747	4.604	7.173
	5	1.476	2.015	2.571	3.365	4.032	5.893
	6	1.440	1.943	2.447	3.143	3.707	5.208
	7	1.415	1.895	2.365	2.998	3.499	4.785
	8	1.397	1.860	2 306	2.896	3.355	4.501
n-	9	1.383	1.833	2.262	2.821	3.250	4.297
30.2	10	1.372	1.812	2.228	2.764	3.169	4.144
	11	1.363	1.796	2.201	2.718	3.106	4.025
	12	1.356	1.782	2.179	2.681	3.055	3.930
	13	1.350	1.771	2.160	2.650	3.012	3.852
1	14	1.345	1.761	2.145	2.624	2.977	3.787
	15	1.341	1.753	2.131	2.602	2.947	3.733
ost	20	1.325	1.725	2.086	2.528	2.845	3.552
	30	1 310	1.697	2.042	2.457	2.750	3.385
	60	1.296	1.671	2.000	2.390	2.660	3.232
	120	1.289	1.658	1.980	2.358	2.617	3.160
	∞	1.282	1.645	1.960	2.326	2.576	3.090

CDF $\Psi_{n-1}(z)$ of the *t*-distribution w/ *n*-1 degrees of freedom

Ibsoff.com sells diet pills. 10 volunteers used them for a month, reporting the net weight changes of:

x <- c(-1.5, 0, .1, -0.5, -.25, 0.3, .1, .05, .15, .05) > mean(x) [1] -0.15 ◀

> cat("stddev=",sd(x), "tstat=",sum(x)/sd(x)/sqrt(10))
stddev= 0.5244044 tstat= -0.904534
> t.test(x)
t = -0.9045, df = 9, p-value = 0.3893
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval: -0.5251363 0.2251363

What do you think?

- Setup much like LRT case: Null H_0 vs Alternate H_1 hypotheses; Type I vs Type II errors; α vs β
- Especially useful for *composite* hyps (where LRT is problematic)

Formulate a test statistic, $S = h(X_1, ..., X_n)$

- Choose "rejection region" R, i.e., values of S that are too unlikely under H_0 to be credible, typically parameterized by some constant c
- Choose "significance level" α (e.g., 0.05), then calculate threshold c s.t. rejection probability < α , and/or calculate pvalue of S = $h(X_1, \dots, X_n)$ i.e., probability of seeing data as extreme as, or more extreme than observed.
- Bottom line: data in rejection region, w/ low α and/or low pvalue, is very unlikely assuming H_0 is true; hinting towards H_1

Now that you get p-values: here's an amusing/depressing story:

http://io9.com/i-fooled-millions-into-thinking-chocolate-helps-weight-1707251800

Something Completely Different

BIOINFORMATICS ORIGINAL PAPER

Vol. 28 no. 7 2012, pages 921–928 doi:10.1093/bioinformatics/bts055

Gene expression

Advance Access publication January 28, 2012

RNAseq

Cells make RNA. Biologists "read" it – a (biased!) random sampling process

RNA seq

What we expect: Uniform Sampling

What we get: highly non-uniform coverage

E.g., assuming uniform, the 8 peaks above 100 are \geq +10 σ above mean

What we get: highly non-uniform coverage

The Good News: we can (partially) correct the bias

Bias is sequence-dependent

and platform/sample-dependent

Fitting a model of the sequence surrounding read starts lets us predict which positions have more reads.

This suggests a natural scheme in which observations may be reweighted to correct for bias. First, define the *sequence bias* b_i at position *i* as $b_i = \Pr[s_i]/\Pr[s_i|m_i]$.

Now, if we reweight the read count x_i at position *i* by b_i , we have,

$$E[b_{i}x_{i}|s_{i}] = b_{i}E[x_{i}|s_{i}]$$

$$= Nb_{i}\Pr[m_{i}|s_{i}]\Pr[s_{i}]$$

$$= N\frac{\Pr[m_{i}|s_{i}]\Pr[s_{i}]}{\Pr[s_{i}|m_{i}]}$$

$$= N\Pr[m_{i}]$$

$$= E[x_{i}]$$

$$you could do this$$

Thus, the reweighted read counts are made unbiased.

sample foreground sequences

(a)

Want a probability distribution over k-mers, $k \approx 40$

Some obvious choices

Full joint distribution: 4^k-1 parameters

PWM (0-th order Markov): (4-1)•k parameters

Something intermediate

Directed Bayes network

Form of the models: Directed Bayes nets

Wetterbom (282 parameters)

One "node" per nucleotide, ±20 bp of read start

- •Filled node means that position is biased
- Arrow i → j means letter at position i modifies bias at j

you could do

this: somewhat

like EM

•For both, numeric params

say how much

How–optimize:

I.How does the amount of training data effect accuracy of the resulting model?

2.What is the chance that we will learn an incorrect model? E.g., learn a biased model from unbiased input?

Wetterbom (282 parameters)

"First, do no harm"

Theorem:

The probability of "false bias discovery," i.e., of learning a non-empty model from *n* reads sampled from *un*biased data is less than

 $I - (\Pr(X < 3 \log n))^{2h}$

where h = number of nucleotides in the model and X is a random variable that (asymptotically in *n*) is χ^2 with 3 degrees of freedom. (E[X] = 3)

"First, do no harm"

Theorem: The probability of "false bias discovery," i.e., of learning a non-empty model from *n* reads sampled from unbiased data, declines *exponentially* with *n*.

how different are two distributions?

Given: r-sided die, with probs $p_1...p_r$ of each face. Roll it n=10,000 times; observed frequencies = $q_1, ..., q_r$, (the MLEs for the unknown p_i 's). How close is p_i to q_i ? *Kullback-Leibler divergence*, also known as *relative entropy*, of Q with respect to P is defined as

$$H(Q||P) = \sum_{i} q_{i} \ln \frac{q_{i}}{p_{i}}$$

where q_i (p_i) is the probability of observing the ith event according to the distribution Q (resp., P), and the summation is taken over all events in the sample space (e.g., all *k*-mers). In some sense, this is a measure of the dissimilarity between the distributions: if $p_i \approx q_i$ everywhere, their log ratios will be near zero and H will be small; as q_i and p_i diverge, their log ratios will deviate from zero and H will increase.

Fancy name, simple idea: H(Q||P) is just the expected per-sample contribution to log-likelihood ratio test for "was X sampled from H_0 : P vs H_1 : Q?"

So, assuming the null hypothesis is false, in order for it to be rejected with say, 1000 : 1 odds, one should choose *m* to be inversely proportional to H(Q||P):

 $mH(Q||P) \ge \ln 1000$ $m \ge \frac{\ln 1000}{H(Q||P)}$

Continuing the notation above, suppose *P* as an unknown distribution with parameters p_1, \ldots, p_r , $\sum p_i = 1$ where *r* is the number of points in the sample space (e.g. $r = 4^k$ in the case of *k*mers). Given a random sample X_1, X_2, \ldots, X_r of size $n = \sum_i X_i$ from *P*, it is well known that
the maximum likelihood estimators for the parameters are $q_i = \frac{X_i}{n} \approx p_i$. How good an estimate
for *P* is this distribution *Q*? The estimators are unbiased:

$$E[q_i] = E\left[\frac{X_i}{n}\right] = \frac{E[X_i]}{n} = \frac{np_i}{n} = p_i$$

and the standard deviation of each estimate is proportional to $1/\sqrt{n}$, so these estimates are increasingly accurate as the sample size increases. A more quantitative assessment of the accuracy of the estimator is obtained by evaluating the KL divergence:

$$H(Q||P) = \sum_{i=1}^{r} q_i \ln \frac{q_i}{p_i} = \sum_{i=1}^{r} q_i \ln \left(1 + \frac{q_i - p_i}{p_i}\right)$$

Using the first two terms of the Taylor series for ln(1 + x), this is

$$H(Q||P) \approx \sum_{i=1}^{r} q_i \left(\frac{q_i - p_i}{p_i} - \frac{1}{2} \left(\frac{q_i - p_i}{p_i} \right)^2 \right)$$
$$= \sum_{i=1}^{r} q_i \frac{q_i - p_i}{p_i} - \frac{q_i}{2p_i} \frac{(q_i - p_i)^2}{p_i}$$

Since $\sum_{i=1}^{r} q_i = \sum_{i=1}^{r} p_i = 1$, $\sum_{i=1}^{r} p_i \frac{q_i - p_i}{p_i} = 0$, so

$$H(Q||P) \approx \sum_{i=1}^{r} q_i \frac{q_i - p_i}{p_i} - p_i \frac{q_i - p_i}{p_i} - \frac{q_i}{2p_i} \frac{(q_i - p_i)^2}{p_i}$$
$$= \sum_{i=1}^{r} \frac{(q_i - p_i)^2}{p_i} \left(1 - \frac{q_i}{2p_i}\right)$$
$$\approx \frac{1}{2} \sum_{i=1}^{r} \frac{(q_i - p_i)^2}{p_i}$$

since $q_i \approx p_i$. Multiplying by n^2/n^2 we have,

$$H(Q||P) \approx \frac{1}{2n} \sum_{i=1}^{r} \frac{(nq_i - np_i)^2}{np_i}$$
$$= \frac{1}{2n} \sum_{i=1}^{r} \frac{(X_i - E[X_i])^2}{E[X_i]}$$

log2(n)

Figure 8: Median R^2 is plotted against training set size. Each point is additionally labeled with the run time of the training procedure.

Availability

Prob/stats we've looked at is actually useful, giving you tools to understand contemporary research in CSE (and elsewhere).

I hope you enjoyed it!

And One Last Bit of Probability Theory

See also:

http://mathforum.org/library/drmath/view/55871.html http://en.wikipedia.org/wiki/Infinite_monkey_theorem