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CSE 312 
Spring 2015

Maximum Likelihood Estimators

and the EM algorithm
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Outline

MLE: Maximum Likelihood Estimators

EM: the Expectation Maximization Algorithm
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Maximum Likelihood Estimators

Learning From Data: 
MLE
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Parameter Estimation

Given: independent samples x1, x2, ..., xn from a 
parametric distribution f(x|θ)

Goal: estimate θ.

E.g.:  Given sample HHTTTTTHTHTTTHH  
of (possibly biased) coin flips, estimate 

            θ = probability of Heads

f(x|θ) is the Bernoulli probability mass function with parameter θ



P(x | θ):  Probability of event x given model θ
Viewed as a function of x (fixed θ), it’s a probability

E.g., Σx P(x | θ) = 1

Viewed as a function of θ (fixed x), it’s called likelihood
E.g., Σθ P(x | θ) can be anything; relative values of interest.   
E.g., if θ = prob of heads in a sequence of coin flips then  
    P(HHTHH | .6) > P(HHTHH | .5),  
I.e., event HHTHH is more likely when θ = .6 than θ = .5

And  what θ make HHTHH most likely?

Likelihood
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Likelihood Function
P( HHTHH | θ ): 

Probability of HHTHH, 
given P(H) = θ:

θ θ4(1-θ)

0.2 0.0013
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One (of many) approaches to param. est.
Likelihood of (indp) observations x1, x2, ..., xn 

As a function of θ, what θ maximizes the 
likelihood of the data actually observed
Typical approach: 

Maximum Likelihood 
Parameter Estimation

L(x1, x2, . . . , xn | �) =
n�

i=1

f(xi | �)

@
@✓L(~x | ✓) = 0 or

@
@✓ logL(~x | ✓) = 0
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(Also verify it’s max, not min, & not better on boundary)
NB:  “n choose n1” term unneeded since outcome sequence is known, but even if 
unknown, it would drop out at the d/dθ step

Example 1
n independent coin flips, x1, x2, ..., xn;   n0 tails, n1 heads,  
n0 + n1 = n;  θ = probability of heads 

 

Observed fraction of 
successes in sample is 
MLE of success 
probability in population

dL/dθ = 0
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Parameter Estimation
Given: indp samples x1, x2, ..., xn from a 
parametric distribution f(x|θ), estimate: θ.

E.g.:  Given n normal samples,  
estimate mean & variance 
f(x) = 1⇥

2⇥⇤2 e�(x�µ)2/(2⇤2)

� = (µ,⇤2)

-3 -2 -1 0 1 2 3

µ ± σ

μ



Ex2: I got data; a little birdie tells me  
it’s normal, and promises σ2 = 1
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X          X  XX    X  XXX               X

Observed Data

x →



-3 -2 -1 0 1 2 3

µ ± σ

μ

1

Which is more likely:  (a) this?

11

X          X  XX    X  XXX               X

Observed Data

μ unknown, σ2 = 1



Which is more likely:  (b) or this?
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-3 -2 -1 0 1 2 3

µ ± σ

μ

1

X          X  XX    X  XXX               X

Observed Data

μ unknown, σ2 = 1



-3 -2 -1 0 1 2 3

µ ± σ

μ

1

Which is more likely:  (c) or this?
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X          X  XX    X  XXX               X

Observed Data

μ unknown, σ2 = 1



-3 -2 -1 0 1 2 3

µ ± σ

μ

1

Which is more likely:  (c) or this?

14

X          X  XX    X  XXX               X

Observed Data

Looks good by eye, but how do I optimize my estimate of μ  ?

μ unknown, σ2 = 1
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Ex. 2: xi � N(µ,⇥2), ⇥2 = 1, µ unknown

And verify it’s max, 
not min & not better 
on boundary

 

Sample mean is MLE of 
population mean

dL/dθ = 0

L(x1, x2, . . . , xn

|✓) =
nY

i=1

1p
2⇡

e

�(xi�✓)2/2

lnL(x1, x2, . . . , xn

|✓) =
nX

i=1

�1

2
ln(2⇡)� (x

i

� ✓)2

2

d

d✓

lnL(x1, x2, . . . , xn

|✓) =
nX

i=1

(x
i

� ✓)

=

 
nX

i=1

x

i

!
� n✓ = 0

b
✓ =

 
nX

i=1

x

i

!
/n = x



Hmm …, density ≠ probability

16

So why is “likelihood” function equal to product of 
densities??  (Prob of seeing any specific xi is 0, right?)

a) for maximizing likelihood, we really only care about 
relative likelihoods, and density captures that

b) has desired property that likelihood increases with 
better fit to the model

and/or

c) if density at x is f(x), for any small δ>0, the probability 
of a sample within ±δ/2 of x is ≈ δf(x), but δ is constant 
wrt θ, so it just drops out of d/dθ log L(…) = 0.

-3 -2 -1 0 1 2 3

µ ± σ

μ

1

X          X  XX    X  



Ex3: I got data; a little birdie tells me 
it’s normal (but does not tell me μ, σ2)
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X          X  XX    X  XXX               X

Observed Data

x →



-3 -2 -1 0 1 2 3

µ ± σ

μ

1

Which is more likely: (a) this?

18

X          X  XX    X  XXX               X

Observed Data

μ, σ2  both unknown

μ ± 1



Which is more likely: (b) or this?
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μ, σ2  both unknown

-3 -2 -1 0 1 2 3

µ ± σ 3   

X          X  XX    X  XXX               X

Observed Data

μ ± 3                 

μ



-3 -2 -1 0 1 2 3

µ ± σ

μ

1

Which is more likely:  (c) or this?

20

X          X  XX    X  XXX               X

Observed Data

μ, σ2  both unknown

μ ± 1



Which is more likely:  (d) or this?
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μ, σ2  both unknown

-3 -2 -1 0 1 2 3

µ ± σ

μ

X          X  XX    X  XXX               X

Observed Data

μ ± 0.5



Which is more likely:  (d) or this?
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X          X  XX    X  XXX               X

Observed Data

Looks good by eye, but how do I optimize my estimates of μ & σ2 ?
μ, σ2  both unknown

-3 -2 -1 0 1 2 3

µ ± σ

μ

μ ± 0.5
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Ex 3: xi � N(µ,⇥2), µ,⇥2 both unknown
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Sample mean is MLE of 
population mean, again

In general, a problem like this results in 2 equations in 2 unknowns.  
Easy in this case, since θ2 drops out of the ∂/∂θ1 = 0 equation

Likelihood 
surface

lnL(x1, x2, . . . , xn|✓1, ✓2) =
nX

i=1

�1

2
ln(2⇡✓2)�

(xi � ✓1)2

2✓2

@

@✓1
lnL(x1, x2, . . . , xn|✓1, ✓2) =

nX

i=1

(xi � ✓1)

✓2
= 0

b
✓1 =

 
nX

i=1

xi

!
/n = x
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Ex. 3, (cont.) 

Sample variance is MLE of 
population variance

lnL(x1, x2, . . . , xn|✓1, ✓2) =
nX

i=1

�1

2
ln(2⇡✓2)�

(xi � ✓1)2

2✓2

@

@✓2
lnL(x1, x2, . . . , xn|✓1, ✓2) =

nX

i=1

�1

2

2⇡

2⇡✓2
+

(xi � ✓1)2

2✓22
= 0

b
✓2 =

⇣Pn
i=1(xi � b

✓1)2
⌘
/n = s

2



Summary
MLE is one way to estimate parameters from data
You choose the form of the model (normal, binomial, ...)
Math chooses the value(s) of parameter(s)
Defining the “Likelihood Function” (based on the form of the model) is often the 
critical step; the math/algorithms to optimize it are generic

Often simply (d/dθ)(log Likelihood) = 0, check max vs min, boundaries, …

Has the intuitively appealing property that the parameters maximize the likelihood 
of the observed data; basically just assumes your sample is “representative”

Of course, unusual samples will give bad estimates (estimate normal human heights from a 
sample of NBA stars?) but that is an unlikely event

Often, but not always, MLE has other desirable properties like being unbiased, or 
at least consistent
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