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the law of  large numbers & the CLT
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sums of  random variables

If X,Y are independent, what is the distribution of  Z = X + Y ?

Discrete case:

  pZ(z) = Σx pX(x) • pY(z-x) 

Continuous case:

fZ(z) = ∫     fX(x) • fY(z-x) dx

E.g. what is the p.d.f. of the sum of 2 normal RV’s?

W = X + Y + Z ?   Similar, but double sums/integrals

V = W + X + Y + Z ?   Similar, but triple sums/integrals

2

+∞

y = z - x

-∞



example

If X and Y are uniform,  then Z = X + Y is not; it’s triangular (like dice):

Intuition: X + Y ≈ 0 or ≈ 1 is rare, but many ways to get X + Y ≈ 0.5

3

0.0 0.2 0.4 0.6 0.8 1.0

0.
02
0

0.
02
5

0.
03
0

0.
03
5

0.
04
0

0.
04
5

x-bar

P
ro
ba
bi
lit
y/
D
en
si
ty

n = 1 

0.0 0.2 0.4 0.6 0.8 1.0

0.
00
0

0.
00
5

0.
01
0

0.
01
5

0.
02
0

0.
02
5

0.
03
0

x-bar

P
ro
ba
bi
lit
y/
D
en
si
ty

n = 2 



moment generating functions

Powerful math tricks for dealing with distributions

We won’t do much with it, but mentioned/used in book, so a very 
brief introduction: 

The kth moment of r.v.  X is E[Xk] ;  M.G.F.  is M(t) = E[etX]

4

aka transforms; b&t 229

Closely related to Laplace transforms, which you may have seen.



mgf  examples

5

An example:

MGF of normal(μ,σ2) is exp(μt+σ2t2/2)

Two key properties:

1. MGF of sum independent r.v.s is product of MGFs:

MX+Y(t) = E[et(X+Y)] = E[etX etY] = E[etX] E[etY] = MX(t) MY(t)

2. Invertibility: MGF uniquely determines the distribution.

e.g.: MX(t) = exp(at+bt2),with b>0, then X ~ Normal(a,2b)

Important example: sum of independent normals is normal:

              X~Normal(μ1,σ1
2)   Y~Normal(μ2,σ2

2)   

MX+Y(t) = exp(μ1t + σ1
2t2/2) • exp(μ2t + σ2

2t2/2)

             = exp[(μ1+μ2)t + (σ1
2+σ2

2)t2/2]

So X+Y has mean (μ1+μ2), variance (σ1
2+σ2

2) (duh) and is normal!  
(way easier than slide 2 way!)



“laws of  large numbers”

Consider i.i.d. (independent, identically distributed) R.V.s  

    X1, X2, X3, …
 
Suppose Xi has μ = E[Xi] < ∞ and σ2 = Var[Xi] < ∞.   
What are the mean & variance of their sum?
 
 
 
So limit as n→∞ does not exist (except in the degenerate 
case where μ = 0;  note that if μ = 0, the center of the data 
stays fixed, but if σ2 > 0, then the variance is unbounded,  i.e., 
its spread grows with n).

6



weak law of  large numbers

Consider i.i.d. (independent, identically distributed) R.V.s  

    X1, X2, X3, …

Suppose Xi has μ = E[Xi] < ∞ and σ2 = Var[Xi] < ∞

What about the sample mean                      , as n→∞?

So, limits do exist; mean is independent of n, variance shrinks.

7
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Continuing: iid RVs  X
1
, X

2
, X

3
, …;   μ = E[Xi];   σ2 = Var[Xi]; 

Expectation is an important guarantee.  

BUT:  observed values may be far from expected values.  

E.g., if Xi ~ Bernoulli(½), the E[Xi]= ½, but Xi is NEVER ½.

Is it also possible that sample mean of Xi’s will be far from ½?

Always?  Usually?  Sometimes?  Never?

weak law of  large numbers

8

Var [Mn] = Var
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n
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Xi



Pr (|Mn � µ| > ✏)  �2

n✏2
n!1

> 0

Proof: (assume σ2  < ∞; theorem true without that, but harder proof)

By Chebyshev inequality,

weak law of  large numbers

For any ε > 0, as n → ∞

9

b&t 5.2

E [Mn] = E


X1 + · · ·+Xn

n

�
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Var [Mn] = Var
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n

Pr (|Mn � µ| > ✏) ! 0



strong law of  large numbers

i.i.d. (independent, identically distributed) random vars 

    X1, X2, X3, …

Xi has μ = E[Xi] < ∞

Strong Law ⇒ Weak Law (but not vice versa)

Strong law implies that for any ε > 0, there are only a finite 
number of n satisfying the weak law condition  
(almost surely, i.e., with probability 1)

Supports the intuition of probability as long term frequency
10

b&t 5.5
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weak vs strong laws

Weak Law:

Strong Law:

How do they differ? Imagine an infinite 2-D table, whose rows are indp 
infinite sample sequences Xi.  Pick ε.  Imagine cell m,n lights up if average of 
1st n samples in row m is > ε away from μ.  

WLLN says fraction of lights in nth column goes to zero as n →∞.  It does 
not prohibit every row from having ∞ lights, so long as frequency declines.  

SLLN also says only a vanishingly small fraction of rows can have ∞ lights.

11



weak vs strong laws – supplement

The differences between the WLLN & SLLN are subtle, and not critically important for 
this course, but for students wanting to know more (e.g., not on exams), here is my summary.  Both 
“laws” rigorously connect long-term averages of repeated, independent observations to 
mathematical expectation, justifying the intuitive motivation for E[.].  Specifically, both 
say that the sequence of (non-i.i.d.) rvs                           derived from any sequence of 
i.i.d. rvs Xi converge to E[Xi]=μ.  The strong law totally subsumes the weak law, but the 
later remains interesting because (a) of its simple proof (Khintchine, early 20th century; 
using Cheybeshev’s inequality (1867)) and (b) historically (WLLN was proved by 
Bernoulli ~1705, for Bernoulli rvs, >150 years before Chebyshev [Ross, p391]).  The 
technical difference between WLLN and SLLN is in the definition of convergence.

Definition: Let Yi be any sequence of rvs (i.i.d. not assumed) and c a constant.   
Yi converges to c in probability if

 

Yi converges to c with probability 1 if 

The weak law is the statement that Mn converges in probability to μ; the strong law 
states it converges with probability 1 to μ.  The strong law subsumes the weak law since 
convergence with probability 1 implies convergence in probability for any sequence Yi of 
rvs (B&T problem 5.5-15).  B&T ex 5.15 illustrates the failure of the converse.  A second 
counterexample is given on the following slide.
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Mn =
Pn

i=1 Xi/n

8✏ > 0, limn!1 Pr (|Yn � c| > ✏) = 0

Pr (limn!1 Yn = c) = 1



weak vs strong laws – supplement
Example: Consider the sequence of rvs Yn ~ Ber(1/n) 
Recall the definition of convergence in probability:

Then Yn converges to c = 0 in probability since Pr(Yn > ε) = 1/n for any 0 < ε <1,   
hence the limit as n→∞ is 0, satisfying the definition.
Recall that Yn converges to c with probability 1 if 

However, I claim that                   does not exist, hence doesn’t equal zero with 
probability 1.  Why no limit?  A 0/1 sequence will have a limit if and only if it is all 0 
after some finite point (i.e., contains only a finite number of 1’s) or vice versa.  But 
the expected number of 0’s & 1’s in the sequence are both infinite; e.g.:

Thus,  Yn converges in probability to zero, but does not converge with probability 1.
Revisiting the “lightbulb model” 2 slides up, w/ “lights on” ⇔ 1, column n has a 
decreasing fraction (1/n) of lit bulbs, while all but a vanishingly small fraction of rows 
have infinitely many lit bulbs.

(For an interesting contrast, consider the sequence of rvs Zn ~ Ber(1/n2).)

13

8✏ > 0, limn!1 Pr (|Yn � c| > ✏) = 0

Pr (limn!1 Yn = c) = 1
Pr (limn!1 Yn = c) = 1

E
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i>0 Yi

⇤
=

P
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i>0
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i = 1



sample mean → population mean
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Xi ~ Unif(0,1)
limn→∞ Σi=1 Xi/n→ μ=0.5n
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sample mean → population mean
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another example
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another example
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another example

19

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Trial number i

S
am

pl
e 

i; 
M

ea
n(

1.
.i)



weak vs strong laws

Weak Law:

Strong Law:

How do they differ? Imagine an infinite 2-D table, whose rows are indp 
infinite sample sequences Xi.  Pick ε.  Imagine cell m,n lights up if average of 
1st n samples in row m is > ε away from μ.  

WLLN says fraction of lights in nth column goes to zero as n →∞.  It does 
not prohibit every row from having ∞ lights, so long as frequency declines.  

SLLN also says only a vanishingly small fraction of rows can have ∞ lights.

20



the law of  large numbers

Note: Dn = E[ | Σ1≤i≤n(Xi-μ) | ] grows with n, but Dn/n → 0

Justifies the “frequency” interpretation of probability

“Regression toward the mean”

Gambler’s fallacy:  “I’m due for a win!”

“Swamps, but does not compensate”

“Result will usually be close to the mean”

    
Many web demos, e.g.  
  http://stat-www.berkeley.edu/~stark/Java/Html/lln.htm
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normal random variable

 X is a normal random variable   X ~ N(μ,σ2)

22
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Mn =
1

n

nX

i=1

Xi ! N

✓
µ,

�2

n

◆

the central limit theorem (CLT)

i.i.d. (independent, identically distributed) random vars

   X1, X2, X3, …

Xi has μ = E[Xi] < ∞ and σ2 = Var[Xi] < ∞
As n → ∞, 

Restated:  As n → ∞,

23

Note: on slide 5, showed sum of normals is exactly normal.  Maybe not a surprise, 
given that sums of almost anything become approximately normal...
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CLT applies even to whacky distributions
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CLT in the real world

CLT also holds under weaker assumptions than stated above, 
and is the reason many things appear normally distributed
Many quantities = sums of (roughly) independent random vars

Exam scores:  sums of individual problems
People’s heights: sum of many genetic & environmental factors
Measurements: sums of various small instrument errors
“Noise” in sci/engr applications: sums of random perturbations
...

28



Human height is  
approximately normal.

Why might that be  
true?  

R.A. Fisher (1918)  
noted it would follow  
from CLT if height  
were the sum of  
many independent random effects, e.g. many genetic factors (plus 
some environmental ones like diet). I.e., suggested part of mechanism 
by looking at shape of the curve.

in the real world…
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 DeMoivre-Laplace Theorem:
 As n→∞:

Equivalently:

normal approximation to binomial
Let Sn = number of successes in n trials (with prob. p). 
    Sn ~ Bin(n,p)  E[Sn] = np   Var[Sn] = np(1-p)

Poisson approx: good for n large, p small (np constant)
Normal approx: For large n, (p stays fixed):  

Sn ≈ Y ~ N(E[Sn], Var[Sn]) = N(np,np(1-p))
Rule of thumb: Normal approx “good” if np(1-p) ≥ 10

Pr(a  Sn  b) �! �

✓
b�npp
np(1�p)

◆
� �

✓
a�npp
np(1�p)

◆



normal approximation to binomial

31

30 40 50 60 70

0.
00

0.
02

0.
04

0.
06

0.
08

k

P
(X
=k
)

Normal(np, np(1-p))
Binomial(n,p)
Poisson(np)

n = 100
p = 0.5



normal approximation to binomial

Ex: Fair coin flipped 40 times.  Probability of 15 to 25 heads?

32

Normal approximation:

Exact (binomial) answer:



R Sidebar
> pbinom(25,40,.5) - pbinom(14,40,.5) 

[1] 0.9193095 

> pnorm(5/sqrt(10))- pnorm(-5/sqrt(10)) 

[1] 0.8861537 

> 5/sqrt(10) 

[1] 1.581139 

> pnorm(1.58)- pnorm(-1.58) 

[1] 0.8858931

SIDEBARS

I’ve included a few sidebar slides like this 
one (a) to show you how to do various 
calculations in R, (b) to check my own 
math, and (c) occasionally to show the 
(usually small) effect of some 
approximations.  Feel free to ignore them 
unless you want to pick up some R tips. 



normal approximation to binomial

Ex: Fair coin flipped 40 times.  Probability of 20 or 21 heads?

34

Normal approximation:

Exact (binomial) answer:

P
bin

(X = 20 _X = 21) =

✓
40

20

◆
+

✓
40

21

◆�✓
1

2

◆
40

⇡ 0.2448

P
norm

(20  X  21) = P

✓
20� 20p

10
 X � 20p

10
 21� 20p

10

◆

⇡ P

✓
0  X � 20p

10
 0.32

◆

⇡ �(0.32)� �(0.00) ⇡ 0.1241

Hmmm… A bit disappointing.



R Sidebar
> sum(dbinom(20:21,40,.5)) 

[1] 0.2447713 

> pnorm(0)- pnorm(-1/sqrt(10)) 

[1] 0.1240852 

> 1/sqrt(10) 

[1] 0.3162278 

> pnorm(.32)- pnorm(0) 

[1] 0.1255158



normal approximation to binomial

Ex: Fair coin flipped 40 times.  Probability of 20 heads?
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Normal approximation:

Exact (binomial) answer:

P
bin

(X = 20) =

✓
40

20

◆✓
1

2

◆
40

⇡ 0.1254

P
norm

(20  X  20) = P

✓
20� 20p

10
 X � 20p

10
 20� 20p

10

◆

⇡ P

✓
0  X � 20p

10
 0

◆

= �(0.00)� �(0.00) = 0.0000

Whoa! … Even more disappointing.



DeMoivre-Laplace and the “continuity correction”

The “continuity correction”:

Imagine discretizing the normal density by shifting probability 
mass at non-integer x to the nearest integer (i.e., “rounding” x).  
Then, probability of binom r.v. falling in the (integer) interval  
[a, ..., b], inclusive, is ≈ the probability of a normal r.v. with the 
same μ,σ2 falling in the (real) interval [a-½ , b+½], even when 
a = b.

37More: Feller, 1945 http://www.jstor.org/stable/10.2307/2236142
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Bin(n=10, p=.5) vs Norm(μ=np, σ2 = np(1-p))

PMF vs Density
(close but not exact)

CDF minus CDF
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normal approx to binomial, revisited

Ex: Fair coin flipped 40 times.  Probability of 20 heads?

39

Normal approximation:

Exact (binomial) answer:

P
bin

(X = 20) =

✓
40

20

◆✓
1

2

◆
40

⇡ 0.1254

P
bin

(X = 20) ⇡ P
norm

(19.5  X  20.5)

= P
norm

✓
19.5� 20p

10
 X � 20p

10
<

20.5� 20p
10

◆

⇡ P
norm

✓
�0.16  X � 20p

10
< 0.16

◆

= �(0.16)� �(�0.16) ⇡ 0.1272

{19.5 ≤ X ≤ 20.5} 
is the set of reals 
that round to the 
set of integers in 

{X = 20}



normal approx to binomial, revisited

Ex: Fair coin flipped 40 times.  Probability of 20 or 21 heads?

40

Normal approximation:

Exact (binomial) answer:

{19.5 ≤ X < 21.5} 
is the set of reals 
that round to the 
set of integers in 
{20 ≤ X < 22}

One more note on continuity correction: Never wrong to use it, but it has the largest effect 
when the set of integers is small.  Conversely, it’s often omitted when the set is large.

P
bin

(X = 20 _X = 21) =

✓
40

20

◆
+

✓
40

21

◆�✓
1

2

◆
40

⇡ 0.2448

P
bin

(20  X < 22) = P
norm

(19.5  X  21.5)

= P
norm

✓
19.5� 20p

10
 X � 20p

10
 21.5� 20p

10

◆

⇡ P
norm

✓
�0.16  X � 20p

10
 0.47

◆

⇡ �(0.47)� �(�0.16) ⇡ 0.2452



R Sidebar

> pnorm(1.5/sqrt(10))- pnorm(-.5/sqrt(10)) 

[1] 0.2451883 

> c(0.5,1.5)/sqrt(10) 

[1] 0.1581139 0.4743416 

> pnorm(0.47) - pnorm(-0.16) 

[1] 0.244382



continuity correction is applicable beyond binomials

 Roll 10 6-sided dice

 X = total value of all 10 dice
 Win if:  X ≤ 25   or  X ≥ 45

42

E[X] = E[
P10

i=1 Xi] = 10E[X1] = 10(7/2) = 35

Var[X] = Var[
P10

i=1 Xi] = 10Var[X1] = 10(35/12) = 350/12

P (win) = 1� P (25.5  X  44.5) =

1� P

✓
25.5�35p
350/12

 X�35p
350/12

 44.5�35p
350/12

◆

⇡ 2(1� �(1.76)) ⇡ 0.079



example: polling
Poll of 100 randomly chosen voters finds that K of them favor proposition 666. 

So: the estimated proportion in favor is K/100 = q
Suppose: the true proportion in favor is p.  

Q.  Give an upper bound on the probability that your estimate is off by > 10 
percentage points, i.e., the probability of |q - p| > 0.1
 A.  K = X1 +…+ X100, where Xi are Bernoulli(p), so by CLT:

K ≈ normal with mean 100p and variance 100p(1-p); or:
q ≈ normal with mean p and variance σ2 = p(1-p)/100

Letting Z = (q-p)/σ (a standardized r.v.), then |q - p| > 0.1 ⇔ |Z| > 0.1/σ 
By symmetry of the normal

PBer( |q - p| > 0.1 ) ≈ 2 Pnorm( Z > 0.1/σ ) = 2 (1 - Φ(0.1/σ))
Unfortunately, p & σ are unknown, but σ2 = p(1-p)/100 is maximized when p = 
1/2, so σ2 ≤ 1/400, i.e. σ ≤ 1/20, hence 

2 (1 - Φ(0.1/σ)) ≤ 2(1-Φ(2)) ≈ 0.046
I.e., less than a 5% chance of an error as large as 10 percentage points.
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Exercise: How much 
smaller can σ be if p ≠ 1/2? 



summary

Distribution of X + Y: summations, integrals (or MGF)

Distribution of X + Y ≠ distribution X or Y in general

Distribution of X + Y is normal if X and Y are normal               (*)
(ditto for a few other special distributions)

Sums generally don’t “converge,” but averages do:

Weak  Law of Large Numbers
Strong Law of Large Numbers

Most surprisingly, averages often converge to the same distribution:  

the Central Limit Theorem says sample mean → normal
[Note that (*) essentially a prerequisite, and that (*) is exact, whereas CLT is approximate]
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