tail bounds

For a random variable X, the tails of X are the parts of the PMF that are "far" from its mean.

binomial tails

PMF for $X \sim \operatorname{Bin}(100,0.5)$

heavy-tailed distribution

heavy-tailed distribution

Often, we want to bound the probability that a random variable X is "extreme." Perhaps:

$$
\begin{gathered}
P(X>\alpha)<\frac{1}{\alpha^{3}} \\
P(X>E[X]+t)<e^{-t} \\
P(|X-E[X]|>t)<\frac{1}{\sqrt{t}}
\end{gathered}
$$

applications of tail bounds

We know that randomized quicksort runs in O(n log n) expected time. But what's the probability that it takes more than $10 n \log (n)$ steps? More than $\mathrm{n}^{1.5}$ steps?
If we know the expected advertising cost is $\$ 1500 /$ day, what's the probability we go over budget? By a factor of 4?
I only expect 10,000 homeowners to default on their mortgages. What's the probability that I,000,000 homeowners default?
"Lake Wobegon, Minnesota, where
all the women are strong, all the men are good looking, and
all the children are above average..."

Markov's inequality

In general, an arbitrary random variable could have very bad behavior. But knowledge is power; if we know something, can we bound the badness?

Suppose we know that X is always non-negative.
Theorem: If X is a non-negative random
variable, then for every $\alpha>0$, we have

$$
P(X \geq \alpha) \leq \frac{E[X]}{\alpha}
$$

Corr:

$$
P(X \geq \alpha E[X]) \leq 1 / \alpha
$$

Markov's inequality

Theorem: If X is a non-negative random variable, then for every $\alpha>0$, we have

$$
P(X \geq \alpha) \leq \frac{E[X]}{\alpha}
$$

Example: if $X=$ daily advertising expenses and

$$
E[X]=1500
$$

Then, by Markov's inequality,

$$
P(X \geq 6000) \leq \frac{1500}{6000}=0.25
$$

Markov's inequality

Theorem: If X is a non-negative random variable, then for every $\alpha>0$, we have

$$
P(X \geq \alpha) \leq \frac{E[X]}{\alpha}
$$

Example: if $X=$ time to quicksort n items, expectation $\mathrm{E}[\mathrm{X}] \approx 1.4 \mathrm{n} \log \mathrm{n}$. What's probability that it takes >4 times as long as expected?
By Markov's inequality:

$$
P(X \geq 4 \cdot E[X]) \leq E[X] /(4 E[X])=I / 4
$$

Markov's inequality

Theorem: If X is a non-negative random variable, then for every $\alpha>0$, we have

$$
P(X \geq \alpha) \leq \frac{E[X]}{\alpha}
$$

Proof:

$$
\begin{aligned}
E[X] & =\Sigma_{x} x P(x) \\
& =\sum_{x<\alpha} x P(x)+\sum_{x \geq \alpha} x P(x) \\
& \geq \quad 0 \quad+\sum_{x \geq \alpha} \alpha P(x) \\
& =\alpha P(X \geq \alpha)
\end{aligned}
$$

Markov's inequality

Theorem: If X is variable, then ff
\rightarrow tive random have

Proof:

$$
\mathrm{E}[\mathrm{X}]
$$

$(x \geq 0 ; \alpha \leq x)$

Chebyshev's inequality

If we know more about a random variable, we can often use that to get better tail bounds.

Suppose we also know the variance.

Theorem: If Y is an arbitrary random variable with $\mathrm{E}[\mathrm{Y}]=\mu$, then, for any $\alpha>0$,

$$
P(|Y-\mu| \geq \alpha) \leq \frac{\operatorname{Var}[Y]}{\alpha^{2}}
$$

Chebyshev's inequality

Theorem: If Y is an arbitrary random variable with $\mu=\mathrm{E}[\mathrm{Y}]$, then, for any $\alpha>0$,

$$
P(|Y-\mu| \geq \alpha) \leq \frac{\operatorname{Var}[Y]}{\alpha^{2}}
$$

Proof: Let $X=(Y-\mu)^{2}$
X is non-negative, so we can apply Markov's inequality:

$$
\begin{aligned}
P(|Y-\mu| \geq \alpha) & =P\left(X \geq \alpha^{2}\right) \\
& \leq \frac{E[X]}{\alpha^{2}}=\frac{\operatorname{Var}[Y]}{\alpha^{2}}
\end{aligned}
$$

Chebyshev's inequality

Theorem: If Y is an arhitramy random variable with \quad y $\alpha>0$,

$$
P(\mid Y
$$

Proof: Let X is non-neg inequality:

$$
P(\mid Y-
$$

a)
$\frac{\operatorname{Var}[Y]}{\alpha^{2}}$,

Chebyshev's inequality

$$
P(|Y-\mu| \geq \alpha) \leq \frac{\operatorname{Var}[Y]}{\alpha^{2}}
$$

E.g., suppose:
$Y=$ money spent on advertising in a day

$$
\begin{aligned}
& \mathrm{E}[\mathrm{Y}]=1500 \\
& \begin{aligned}
&\left.\operatorname{Var}[\mathrm{Y}]=500^{2} \text { (i.e. } \mathrm{SD}[\mathrm{Y}]=500\right) \\
& P(Y \geq 6000)=P(|Y-\mu| \geq 4500) \\
& \leq \frac{500^{2}}{4500^{2}}=\frac{1}{81} \approx 0.012
\end{aligned}
\end{aligned}
$$

Chebyshev's inequality

$$
P(|Y-\mu| \geq \alpha) \leq \frac{\operatorname{Var}[Y]}{\alpha^{2}}
$$

E.g., suppose:

$$
Y=\text { comparisons in quicksort for } n=1024
$$

$$
\mathrm{E}[\mathrm{Y}]=1.4 \mathrm{n} \log _{2} n \approx 14000
$$

$$
\operatorname{Var}[Y]=\left(\left(21-2 \pi^{2}\right) / 3\right)^{*} n^{2} \approx 441000
$$

$$
\text { (i.e. } \operatorname{SD}[Y] \approx 664 \text {) }
$$

$$
P(Y \geq 4 \mu)=P(Y-\mu \geq 3 \mu) \leq \operatorname{Var}(Y) /\left(9 \mu^{2}\right)<.000242
$$

1000 times smaller than Markov
but still overestimated?: $\sigma / \mu \approx 5 \%$, so $4 \mu \approx \mu+60 \sigma$

Chebyshev's inequality

Theorem: IfY is an arbitrary random variable with $\mu=\mathrm{E}[\mathrm{Y}]$, then, for any $\alpha>0$,

$$
P(|Y-\mu| \geq \alpha) \leq \frac{\operatorname{Var}[Y]}{\alpha^{2}}
$$

Corr: If

$$
\sigma=S D[Y]=\sqrt{\operatorname{Var}[Y]}
$$

Then:

$$
P(|Y-\mu| \geq t \sigma) \leq \frac{\sigma^{2}}{t^{2} \sigma^{2}}=\frac{1}{t^{2}}
$$

Chebyshev's inequality

For comparison, normal \& many others would decline exponentially in t , or faster I.e., Chebyshev is much weaker, but much more general ${ }^{23}$
$Y \sim \operatorname{Bin}(15000,0.1)$
$\mu=E[Y]=1500, \sigma=\sqrt{\operatorname{Var}(Y)}=36.7$
$P(Y \geq 6000)=P(Y \geq 4 \mu) \leq 1 / 4$
$\mathrm{P}(\mathrm{Y} \geq 6000)=\mathrm{P}(\mathrm{Y}-\mu \geq 122 \sigma) \leq 7 \times 10^{-5}$
(Markov)
(Chebyshev)
Poisson approximation: Y ~ Poi(I 500) Rough computer calculation:

$$
P(Y \geq 6000) \ll 10^{-1600}
$$

And the exact value is $\approx 4 \times 10^{-2031}$

Chernoff bounds

Suppose $X \sim \operatorname{Bin}(n, p)$
$\mu=E[X]=p n$
Chernoff bound:
For any $0<\delta<1$,

$$
\begin{aligned}
& P(X>(1+\delta) \mu) \leq \exp \left(-\frac{\delta^{2} \mu}{3}\right) \\
& P(X<(1-\delta) \mu) \leq \exp \left(-\frac{\delta^{2} \mu}{2}\right)
\end{aligned}
$$

Chernoff bounds

Suppose $X \sim \operatorname{Bin}(n, p)$
$\mu=\mathrm{E}[\mathrm{X}]=\mathrm{pr}$
Chernoff bou
For any 0

$$
P(X)
$$

$$
\mathrm{xp}\left(-\frac{\delta^{2} \mu}{3}\right)
$$

$$
P(X<) \cdot \operatorname{xp}\left(-\frac{\delta^{2} \mu}{2}\right)
$$

Model: $\mathrm{n}=100,000$ computers each independently send a packet with probability $p=0.01$ each second. The router processes its buffer every second. How many packet buffers so that router drops a packet:

- Never?

100,000

- With probability $\approx 1 / 2$, every second?
$\approx 1000(P(X>E[X]) \approx 1 / 2$ when $X \sim$ Binomial $(100000, .01))$
- With probability at most 10^{-6}, every hour?

1257

- With probability at most 10^{-6}, every year?

1305

- With probability at most 10^{-6}, since Big Bang?

1404
Exercise: How would you formulate the exact answer to this problem in terms
of binomial probabilities? Can you get a numerical answer?
$X \sim \operatorname{Bin}(100,000,0.01), \mu=E[X]=1000$
Let $p=$ probability of buffer overflow in I second By the Chernoff bound

$$
p=P(X>(1+\delta) \mu) \leq \exp \left(-\frac{\delta^{2} \mu}{3}\right)
$$

Overflow probability in n seconds

$$
=I-(I-p)^{n} \leq n p \leq n \exp \left(-\delta^{2} \mu / 3\right),
$$

which is $\leq \varepsilon$ provided $\delta \geq \sqrt{(3 / \mu) \ln (n / \varepsilon)}$.
For $\varepsilon=10^{-6}$ per hour: $\delta \approx .257$, buffers $=1257$
For $\varepsilon=10^{-6}$ per year: $\delta \approx .305$, buffers $=1305$
For $\varepsilon=10^{-6}$ per $15 B Y: \delta \approx .404$, buffers $=1404$

Tail bounds - bound probabilities of extreme events Important, e.g., for "risk management" applications Three (of many):

Markov: $P(X \geq k \mu) \leq I / k$ (weak, but general; only need $X \geq 0$ and μ) Chebyshev: $\mathrm{P}(|X-\mu| \geq \mathrm{k} \sigma) \leq \mathrm{I} / \mathrm{k}^{2}$ (often stronger, but also need σ) Chernoff: various forms, depending on underlying distribution; usually I/exponential, vs I/polynomial above
Generally, more assumptions/knowledge \Rightarrow better bounds
"Better" than exact distribution?
Maybe, e.g. if latter is unknown or mathematically messy
"Better" than, e.g., "Poisson approx to Binomial"?
Maybe, e.g. if you need rigorously " \leq " rather than just " \approx "

