
6. random variables

CSE 312,  2015 Spring,  W.L.Ruzzo
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random variables
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A random variable is a numeric function of the outcome of an 
experiment, not the outcome itself.  
Ex.

Let H be the number of Heads when 20 coins are tossed
Let T be the total of 2 dice rolls
Let X be the number of coin tosses needed to see 1st head

Note: even if the underlying experiment has “equally likely 
outcomes,” the associated random variable may not 

Outcome X = #H P(X)
TT 0 P(X=0) = 1/4
TH 1

 P(X=1) = 1/2
HT 1
HH 2 P(X=2) = 1/4

}

(Technically, neither random 
nor a variable, but...)



20 balls numbered 1, 2, ..., 20
Draw 3 without replacement
Let X = the maximum of the numbers on those 3 balls

What is P(X ≥ 17) 

Alternatively:

numbered balls
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first head
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Flip a (biased) coin repeatedly until 1st head observed
How many flips?  Let X be that number.

P(X=1) = P(H)     = p
P(X=2) = P(TH)   = (1-p)p
P(X=3) = P(TTH) = (1-p)2p
...

Check that it is a valid probability distribution:

1)

2)

memorize me!



A discrete random variable is one taking on a countable 
number of possible values.
Ex:

X = sum of 3 dice,   3 ≤ X ≤ 18,  X ∈ N
Y = number of 1st head in seq of coin flips,   1 ≤ Y,  Y ∈ N 
Z = largest prime factor of (1+Y),    Z ∈ {2, 3, 5, 7, 11, ...}

Definition: If X is a discrete random variable taking on values 
from a countable set T ⊆ R, then

is called the probability mass function.  Note:

probability mass functions
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Let X be the number of heads observed in n coin flips

Probability mass function (p = ½):
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n = 2 n = 8
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The cumulative distribution function for a random variable X is 
the function F: R →[0,1] defined by 
                        F(a) = P[X≤a]

Ex: if X has probability mass function given by:

cdf
pmf

cumulative distribution function

7NB: for discrete random variables, be careful about  “≤” vs “<”



why random variables?
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Why use random variables?
A. Often we just care about numbers

If I win $1 per head when 20 coins are tossed, what is my average 
winnings?  What is the most likely number?  What is the probability 
that I win < $5? ...

B. It cleanly abstracts away unnecessary detail about the 
experiment/sample space;  PMF is all we need.

Flip 7 coins, roll 2 dice, and throw  
a dart; if dart landed in sector =  
dice roll mod #heads, then X = ...

Outcome x=#H P(X)

TT 0 P(X=0) = 1/4

TH 1
 P(X=1) = 1/2

HT 1

HH 2 P(X=2) = 1/4
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expectation
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For a discrete r.v. X with p.m.f. p(•), the expectation of X, aka expected 
value or mean, is

E[X] = Σx xp(x)

For the equally-likely outcomes case, this is just the average of the 
possible random values of X

For unequally-likely outcomes, it is again the average of the possible 
random values of X, weighted by their respective probabilities

Ex 1:  Let X = value seen rolling a fair die  p(1), p(2), ..., p(6) = 1/6

Ex 2:  Coin flip; X = +1 if H (win $1), -1 if T (lose $1)

  E[X] = (+1)•p(+1) + (-1)•p(-1) = 1•(1/2) +(-1)•(1/2) = 0

expectation

10

average of random values, weighted 
by their respective probabilities



For a discrete r.v. X with p.m.f. p(•), the expectation of X, aka expected 
value or mean, is

E[X] = Σx xp(x)

Another view:  A 2-person gambling game.  If X is how much you 
win playing the game once, how much would you expect to win, on 
average, per game, when repeatedly playing?

Ex 1:  Let X = value seen rolling a fair die  p(1), p(2), ..., p(6) = 1/6
If you win X dollars for that roll, how much do you expect to win?

Ex 2:  Coin flip; X = +1 if H (win $1), -1 if T (lose $1)
  E[X] = (+1)•p(+1) + (-1)•p(-1) = 1•(1/2) +(-1)•(1/2) = 0
“a fair game”: in repeated play you expect to win as much as you 
lose.  Long term net gain/loss = 0.

expectation

11

average of random values, weighted 
by their respective probabilities



For a discrete r.v. X with p.m.f. p(•), the expectation of X, aka expected 
value or mean, is

E[X] = Σx xp(x)

A third view:  E[X] is the “balance point” or “center of mass” of the 
probability mass function

Ex:  Let X = number of heads seen when flipping 10 coins

expectation
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average of random values, weighted 
by their respective probabilities
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Let X be the number of flips up to & including 1st head 
observed in repeated flips of a biased coin.  If I pay you $1 
per flip, how much money would you expect to make?

A calculus trick:

So (*) becomes:

E.g.:
p=1/2;   on average head every   2nd flip
p=1/10; on average, head every 10th flip.

P (H) = p; P (T ) = 1� p = q

p(i) = pqi�1

E[X] =
P

i�1 ip(i) =
P

i�1 ipq
i�1 = p

P
i�1 iq

i�1 (⇤)
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first head

How much 
would you 
pay to play?

dy0/dy = 0

(To geo)

E[X] = p
X

i�1

iqi�1 =
p

(1� q)2
=

p

p2
=

1

p

← PMF



Let X be the number 
of heads observed in 
n repeated flips of a 
biased coin.  If I pay 
you $1 per head, how 
much money would 
you expect to make? 

E.g.:
p=1/2;   on average,  
            n/2 heads   
p=1/10; on average,  
            n/10 heads

14

how many heads

How much would 
you pay to play?

(compare to slide 24, slide 56)



Calculating E[g(X)]:
Y=g(X) is a new r.v.  Calculate P[Y=j], then apply defn:

       X = sum of 2 dice rolls                      Y = g(X) = X mod 5

expectation of  a function of  a random variable
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j q(j) = P[Y = j] j•q(j)-

0 4/36+3/36 = 7/36 0/36-

1 5/36+2/36 = 7/36 7/36-

2 1/36+6/36+1/36 = 8/36 16/36-

3 2/36+5/36 = 7/36 21/36-

4 3/36+4/36 = 7/36 28/36-

72/36-

i p(i) = P[X=i] i•p(i)

2 1/36 2/36

3 2/36 6/36

4 3/36 12/36

5 4/36 20/36

6 5/36 30/36

7 6/36 42/36

8 5/36 40/36

9 4/36 36/36

10 3/36 30/36

11 2/36 22/36

12 1/36 12/36

252/36E[X] = Σi ip(i) = 252/36   = 7

E[Y] = Σj jq(j) =  72/36  = 2

Way
 1



Calculating E[g(X)]:  Another way – add in a different order, 
using P[X=...] instead of calculating P[Y=...]

       X = sum of 2 dice rolls                      Y = g(X) = X mod 5

expectation of  a function of  a random variable
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j q(j) = P[Y = j] j•q(j)-

0 4/36+3/36 = 7/36 0/36-

1 5/36+2/36 = 7/36 7/36-

2 1/36+6/36+1/36 = 8/36 16/36-

3 2/36+5/36 = 7/36 21/36-

4 3/36+4/36 = 7/36 28/36-

72/36-

i p(i) = P[X=i] g(i)•p(i)

2 1/36 2/36

3 2/36 6/36

4 3/36 12/36

5 4/36 0/36

6 5/36 5/36

7 6/36 12/36

8 5/36 15/36

9 4/36 16/36

10 3/36 0/36

11 2/36 2/36

12 1/36 2/36

72/36E[g(X)] = Σi g(i)p(i) =    252/3 = 2

E[Y] = Σj jq(j) =  72/36  = 2

Way
 2



Above example is not a fluke.

Theorem: if Y = g(X), then E[Y] = Σi g(xi)p(xi), where 
  xi, i = 1, 2, ... are all possible values of X.
Proof: Let  yj, j = 1, 2, ... be all possible values of  Y.

expectation of  a function of  a random variable

17

xi6

xi1

xi3

X Y
g

yj1

yj2

xi2

xi4

xi5

yj3

Note that Sj = { xi | g(xi)=yj } is a 
partition of the domain of g.

BT pg.84-85

Slide 49



properties of  expectation
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A & B each bet $1, then flip 2 coins:

Let X be A’s net gain: +1, 0, -1, resp.:

What is E[X]?

E[X]  = 1•1/4 + 0•1/2 + (-1)•1/4  =  0

What is E[X2]?

E[X2] = 12•1/4 + 02•1/2 + (-1)2•1/4 = 1/2

HH A wins $2
HT Each takes 

back $1TH
TT B wins $2

P(X = +1) = 1/4
P(X = 0) = 1/2
P(X = -1) = 1/4

Big Deal Note:
 E[X2] ≠ E[X]2
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properties of  expectation

Linearity of expectation, I

For any constants a, b:   E[aX + b] = aE[X] + b

Proof:



properties of  expectation–example
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What is E[X]?

E[X]  = 1•1/4 + 0•1/2 + (-1)•1/4  =  0

What is E[X2]?

E[X2] = 12•1/4 + 02•1/2 + (-1)2•1/4 = 1/2

What is E[2X+1]?

E[2X + 1] = 2E[X] + 1 = 2•0 + 1 = 1

HH A wins $2
HT Each takes 

back $1TH
TT B wins $2

P(X = +1) = 1/4
P(X = 0) = 1/2
P(X = -1) = 1/4

Let X = A’s net gain: +1, 0, -1, resp.:A & B each bet $1, then flip 2 coins:
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first head casino

Example:  
Caezzo’s Palace Casino offers the following game:   They flip 
a biased coin (P(Heads) = 0.10) until the first Head comes 
up.  “You’re on a hot streak now!  The more Tails the more 
you win!”  Let X be the number of flips up to & including 1st 
head.   They will pay you $2 per flip, i.e.,  2X dollars.  They 
charge you $25 to play.  

Q:  Is it a fair game?  On average, how much would you 
expect to win/lose per game, if you play it repeatedly?

A: Not fair.  Your net winnings per game is 2X - 25, and  
  E[2 X - 25] = 2 E[X] - 25 = 2(1/0.10) - 25 = -5,  
i.e., you lose $5 per game on average

21



Linearity, II
Let  X and Y be two random variables derived from 
outcomes of a single experiment.  Then

Proof:  Assume the sample space S is countable.  (The result is true 
without this assumption, but I won’t prove it.)  Let X(s),  Y(s) be the 
values of these r.v.’s for outcome s ∈ S.  
Claim:  

Proof: similar to that for “expectation of a function of an r.v.,” i.e., the 
events “X=x” partition S, so sum above can be rearranged to match 
the definition of 

Then:

22

properties of  expectation

True even if X, Y dependentE[X+Y] = E[X] + E[Y]

E[X+Y] = Σs∈S(X[s] + Y[s]) p(s)  
            = Σs∈SX[s] p(s) + Σs∈SY[s] p(s) = E[X] + E[Y]



properties of  expectation-example
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What is E[X]?

E[X]  = 1•1/4 + 0•1/2 + (-1)•1/4  =  0

What is E[X2]?

E[X2] = 12•1/4 + 02•1/2 + (-1)2•1/4 = 1/2

What is E[X2+2X+1]?

E[X2 + 2X + 1] = E[X2] + 2E[X] + 1 = 1/2 + 2•0 + 1 = 1.5

HH A wins $2
HT Each takes 

back $1TH
TT B wins $2

P(X = +1) = 1/4
P(X = 0) = 1/2
P(X = -1) = 1/4

Let X = A’s net gain: +1, 0, -1, resp.:A & B each bet $1, then flip 2 coins:
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properties of  expectation

Example

X = # of heads in one coin flip, where P(X=1) = p.
What is E(X)?

E[X] = 1•p + 0 •(1-p) = p

Let Xi, 1 ≤ i ≤ n,  be # of H in flip of coin with P(Xi=1) = pi

What is the expected number of heads when all are flipped?
E[ΣiXi] = ΣiE[Xi] = Σipi

Special case: p1 = p2 = ... = p : 
E[# of heads in n flips] = pn ☜  Compare to slide 14



25

properties of  expectation

Note:
Linearity is special!
It is not true in general that 

E[X•Y] = E[X] • E[Y]
E[X2] = E[X]2

E[X/Y] = E[X] / E[Y]
E[asinh(X)] = asinh(E[X])

•
•
•

← counterexample  above



variance
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risk

Alice & Bob are gambling (again).  X = Alice’s gain per flip:

E[X] = 0  

                      . . .   Time passes   . . .  

Alice (yawning) says “let’s raise the stakes”

E[Y] = 0, as before.   

Are you (Bob) equally happy to play the new game?



variance
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E[X] measures the “average” or “central tendency” of X.
What about its variability?

If E[X] = μ, then E[|X-μ|] seems like a natural quantity to 
look at: how much do we expect (on average) X to deviate 
from its average.  

Unfortunately, it’s a bit inconvenient mathematically; 
following is nicer/easier/much more common.



variance
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Definitions

The variance of a random variable X with mean E[X] = μ is

    Var[X] = E[(X-μ)2], 

often denoted σ2.

The standard deviation of X is 
 
    σ = √Var[X]



what  does variance tell us?

The variance of a random variable X with mean E[X] = μ is

Var[X] = E[(X-μ)2], often denoted σ2.

1:  Square always ≥ 0, and exaggerated as X moves away  
from μ, so Var[X] emphasizes deviation from the mean.

II:  Numbers vary a lot depending on exact distribution of 
X, but it is common that X is 

within μ ± σ   ~66% of the time, and 
within μ ± 2σ ~95% of the time.

(We’ll see the reasons for this soon.)
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mean and variance

μ = E[X] is about location; σ = √Var(X) is about spread
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σ≈2.2 

σ≈6.1

μ

μ

# heads in 20 flips, p=.5

# heads in 150 flips, p=.5

Blue arrows denote the interval μ ± σ 
(and note σ bigger in absolute terms in second ex., but smaller as a proportion of μ or max.)
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risk

Alice & Bob are gambling (again).  X = Alice’s gain per flip:

E[X] = 0 Var[X] = 1

                      . . .   Time passes   . . .

Alice (yawning) says “let’s raise the stakes”

E[Y] = 0, as before.   Var[Y] = 1,000,000
Are you (Bob) equally happy to play the new game?



example

Two games:
a) flip 1 coin, win Y = $100 if heads,  $-100 if tails
b) flip 100 coins, win Z = (#(heads) - #(tails)) dollars

Same expectation in both: E[Y] = E[Z] = 0
Same extremes in both: max gain = $100; max loss = $100 

But  
variability  
is very  
different:

σZ = 10 

σY = 100      
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0.
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0.
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0.
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0.5 0.5

~~~~

horizontal arrows = μ ± σ 



more variance examples

X1 = sum of 2 fair dice, minus 7

X2 = fair 11-sided die labeled 
-5, ..., 5 

X3 = Y-6•signum(Y), where Y is 
the difference of 2 fair 
dice, given no doubles

X4 = X3 when 3 pairs of dice all 
give same X3
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see slide 8



properties of  variance
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Var(X) = E[(X � µ)2]

= E[X2 � 2µX + µ2]

= E[X2]� 2µE[X] + µ2

= E[X2]� 2µ2 + µ2

= E[X2]� µ2

= E[X2]� (E[X])2



properties of  variance
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Example:
    What is Var[X] when X is outcome of one fair die?

    E[X] = 7/2, so



            Var[aX+b] = a2 Var[X]

Ex: 

properties of  variance
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   E[X] = 0
Var[X] = 1

        Y = 1000 X
   E[Y] = E[1000 X] = 1000 E[X] = 0
Var[Y] = Var[103 X]=106Var[X] = 106

NOT linear;
insensitive to location (b), 

quadratic in scale (a)



In general:

Var[X+Y] ≠ Var[X] + Var[Y]

Ex 1:

Let X = ±1 based on 1 coin flip

As shown above,  E[X] = 0, Var[X] = 1

Let Y = -X; then Var[Y] = (-1)2Var[X] = 1

But X+Y = 0, always, so Var[X+Y] = 0

Ex 2:

As another example, is Var[X+X] = 2Var[X]?

properties of  variance

38

^^^^^^^

NOT linear



independence 

and    .  
joint   . 

distributions
39



r.v.s and independence

Defn: Random variable X and event E are independent if the 
event E is independent of the event {X=x} (for any fixed x), 
i.e.

∀x P({X = x} & E) = P({X=x}) • P(E)

Defn: Two random variables X and Y are independent if the 
events {X=x} and {Y=y} are independent (for any fixed x, y), 
i.e.

∀x, y P({X = x} & {Y=y}) = P({X=x}) • P({Y=y})

Intuition as before: knowing X doesn’t help you guess Y or E 
and vice versa.

40



r.v.s and independence

Random variable X and event E are independent if 

∀x P({X = x} & E) = P({X=x}) • P(E)

Ex 1: Roll a fair die to obtain a random number 1 ≤ X ≤ 6, then flip a 
fair coin X times.  Let E be the event that the number of heads is even.

P({X=x}) = 1/6  for any 1 ≤ x ≤ 6,

P(E) = 1/2
P( {X=x} & E ) = 1/12, so they are independent

Ex 2: as above, and let F be the event that the total number of heads = 6.

P(F) = 2-6/6 > 0, and considering, say, X=4, we have  P(X=4) = 1/6 > 0 
(as above), but P({X=4} & F) = 0, since you can’t see 6 heads in 4 flips.   
So X & F are dependent.  (Knowing that X is small renders F impossible; 
knowing that F happened means X must be 6.)

41



r.v.s and independence

Two random variables X and Y are independent if the events {X=x} 
and {Y=y} are independent (for any x, y), i.e.

∀x, y P({X = x} & {Y=y}) = P({X=x}) • P({Y=y})

Ex: Let X be number of heads in first n of 2n coin flips, Y be number 
in the last n flips, and let Z be the total.  X and Y are independent:

  

But X and Z are not independent, since, e.g., knowing that X = 0 
precludes Z > n.  E.g.,  P(X = 0) and P(Z = n+1) are both positive, 
but P(X = 0 & Z = n+1) = 0.
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joint distributions

Often, several random variables are simultaneously observed 
X = height and Y = weight
X = cholesterol and Y = blood pressure
X1, X2, X3 = work loads on servers A, B, C

Joint probability mass function:
fXY(x, y) = P({X = x} & {Y = y})

Joint cumulative distribution function:
FXY(x, y) = P({X ≤ x} & {Y ≤ y})

43



examples

Two joint PMFs 
 
 
 
 
 
 

P(W = Z) = 3 * 2/24 = 6/24
P(X = Y) = (4 + 3 + 2)/24 = 9/24
Can look at arbitrary relationships among variables this way
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W  Z 1 2 3

1 2/24 2/24 2/24

2 2/24 2/24 2/24

3 2/24 2/24 2/24

4 2/24 2/24 2/24

X    Y 1 2 3

1 4/24 1/24 1/24

2 0 3/24 3/24

3 0 4/24 2/24

4 4/24 0 2/24
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sampling from a joint distribution
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another example

Flip n fair coins

X = #Heads seen in first n/2+k

Y = #Heads seen in last n/2+k
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220 240 260 280
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n = 1000   k = 0
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n = 1000   k = 400

X

Y
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A Nonlinear Dependence

Total # Heads
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])



marginal distributions

Two joint PMFs  
 
 
 
 
 
 
 
 
 
 

Question:  Are W & Z independent?  Are X & Y 
independent?
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W  Z 1 2 3 fW(w)
1 2/24 2/24 2/24 6/24

2 2/24 2/24 2/24 6/24

3 2/24 2/24 2/24 6/24

4 2/24 2/24 2/24 6/24

fZ(z) 8/24 8/24 8/24

X    Y 1 2 3 fX(x)
1 4/24 1/24 1/24 6/24

2 0 3/24 3/24 6/24

3 0 4/24 2/24 6/24

4 4/24 0 2/24 6/24

fY(y) 8/24 8/24 8/24

fY(y) = Σx fXY(x,y)
fX(x) = Σy fXY(x,y)

Marginal PMF of one r.v.: sum 
over the other (Law of total probability)



joint, marginals and independence

Repeating the Definition: Two random variables X and Y are 
independent if the events {X=x} and {Y=y} are independent 
(for any fixed x, y), i.e.

∀x, y P({X = x} & {Y=y}) = P({X=x}) • P({Y=y})

Equivalent Definition: Two random variables X and Y are 
independent if their joint probability mass function is the 
product of their marginal distributions, i.e.

∀x, y fXY(x,y) = fX(x) • fY(y)

Exercise:  Show that this is also true of their cumulative 
distribution functions

48



expectation of  a function of  2 r.v.’s

A function g(X, Y) defines a new random variable.

Its expectation is:

E[g(X, Y)] = ΣxΣy g(x, y) fXY(x,y)

Expectation is linear.  E.g., if g is linear:

E[g(X, Y)] = E[a X + b Y + c] = a E[X] + b E[Y] + c

Example:

g(X, Y) = 2X-Y

E[g(X,Y)] = 72/24 = 3

E[g(X,Y)] = 2•E[X] - E[Y]

               = 2•2.5 - 2 = 3
49

X    Y 1 2 3

1 1 • 4/24 0 • 1/24 -1 • 1/24

2 3 • 0/24 2 • 3/24 1 • 3/24

3 5 • 0/24 4 • 4/24 3 • 2/24

4 7 • 4/24 6 • 0/24 5 • 2/24

☜ like slide 17

recall both marginals are uniform
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a zoo of  (discrete) 
random variables



discrete uniform random variables

A discrete random variable X equally likely to take any 
(integer) value between integers a and b, inclusive, is uniform.

Notation:           X ~ Unif(a,b)

Probability:

Mean, Variance:

Example: value shown on one  
roll of a fair die is Unif(1,6):

P(X=i) = 1/6  
E[X]    = 7/2  
Var[X] = 35/12
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Bernoulli random variables

An experiment results in “Success” or “Failure”
X is a random indicator variable (1 = success, 0 = failure)
    P(X=1) = p   and    P(X=0) = 1-p
X is called a Bernoulli random variable:  X ~ Ber(p)
E[X] = E[X2] = p
Var(X) = E[X2] – (E[X])2 = p – p2 = p(1-p)

Examples:
coin flip
random binary digit
whether a disk drive crashed
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Jacob (aka James, Jacques) 
Bernoulli, 1654 – 1705 



binomial random variables

Consider n independent random variables Yi ~ Ber(p) 
X = Σi Yi is the number of successes in n trials
X is a Binomial random variable:  X ~ Bin(n,p)
 

By Binomial theorem, 
Examples

# of heads in n coin flips
# of 1’s in a randomly generated length n bit string
# of disk drive crashes in a 1000 computer cluster

   E[X] = pn
Var(X) = p(1-p)n
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←(proof below, twice)



binomial pmfs
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binomial pmfs
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mean and variance of  the binomial (I)

56

☜ generalizes slide 14



products of  independent r.v.s

57

Theorem: If X & Y are independent, then E[X•Y] = E[X]•E[Y]
Proof:

Note: NOT true in general; see earlier example E[X2]≠E[X]2

independence

any dist, not just binomial



Theorem: If X & Y are independent, (any dist, not just binomial) then  
Var[X+Y] = Var[X]+Var[Y]

Proof: Let 

variance of  independent r.v.s is additive
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Var(aX+b) = a2Var(X)    

(Bienaymé, 1853)

previous slide



Theorem: If X & Y are independent, (any dist, not just binomial) then  
Var[X+Y] = Var[X]+Var[Y]

Alternate Proof:  

variance of  independent r.v.s is additive
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(Bienaymé, 1853)

slide 57



mean, variance of  the binomial (II)
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mean, variance of  the binomial (II)
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Q. Why the big difference?    A.

0 20 40 60 80 100

    Indp random 
   fluctuations tend 
  to cancel when  
 added; dependent 
ones may reinforce; 
“nY7”: no such 
cancelation; much 
variation



A RAID-like disk array consists of n drives,  
each of which will fail independently with  
probability p.  Suppose it can operate  
effectively if at least one-half of its  
components function, e.g., by “majority vote.”
For what values of p is a 5-component system more likely to 
operate effectively than a 3-component system?

X5 = # failed in 5-component system ~ Bin(5, p)
X3 = # failed in 3-component system ~ Bin(3, p)

disk failures
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X5 = # failed in 5-component system ~ Bin(5, p)
X3 = # failed in 3-component system ~ Bin(3, p)
P(5 component system effective) = P(X5 < 5/2)  
 
 
P(3 component system effective) = P(X3 < 3/2)  
 
 

Calculation:  
5-component system 
is better iff p < 1/2
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Goal: send a 4-bit message over a noisy communication channel.

Say, 1 bit in 10 is flipped in transit, independently.

What is the probability that the message arrives correctly?
Let X = # of errors; X ~ Bin(4, 0.1)
P(correct message received) = P(X=0)  
 

Can we do better?  Yes: error correction via redundancy.

E.g., send every bit in triplicate; use majority vote.  
Let Y = # of errors in one trio;  Y ~ Bin(3, 0.1); P(a trio is OK) =  
 
 

If X’ = # errors in triplicate msg, X’ ~ Bin(4, 0.028), and 

noisy channels
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error correcting codes

The Hamming(7,4) code:
Have a 4-bit string to send over the network (or to disk)
Add 3 “parity” bits, and send 7 bits total
If bits are b1b2b3b4 then the three parity bits are  
   parity(b1b2b3), parity(b1b3b4), parity(b2b3b4)
Each bit is independently corrupted (flipped) in transit with 
probability 0.1

Z = number of bits corrupted ~ Bin(7, 0.1)
The Hamming code allow us to correct all 1 bit errors.  

(E.g., if b1 flipped, 1st 2 parity bits, but not 3rd, will look wrong; the 
only single bit error causing this symptom is b1.  Similarly for any 
other single bit being flipped.  Some, but not all, multi-bit errors can 
be detected, but not corrected.)

P(correctable message received) = P(Z ≤ 1)
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Hamming example

“Parity(x,y,z)” is perhaps best defined as (x+y+z+1) mod 2
I.e.,  make sure that there are an odd number of  one-bits among x,y,z,parity.  Why?  
“Stuck at zero” faults are a common error mode in digital systems, so it’s best if the 
parity check on 000 is 1.  I.e., 0001 is OK but 0000 would be recognized as faulty.

Suppose the message you want to send is ‘1011’
Instead, you send ‘1011 1 0 1’ (via rules on prev slide)
If your partner receives a 1-bit corruption of this, e.g.,

then both underlined parity bits are incorrect: the quadruples 
defined above (incl the parity bit) have even parity, but should have 
odd parity.  Studying the rules on the prev slide, this is the ONLY 
single bit corruption displaying this pattern, so you know to 
“correct” the initial 0 bit to 1, recovering the 1011 message.

Exercise: try all 6 other single bit errors; you should see that each 
has a distinct pattern of “parity errors,” hence is correctable.
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Using Hamming error-correcting codes:  Z ~ Bin(7, 0.1)

Recall, uncorrected success rate is

And triplicate code success rate is:

Hamming code is nearly as reliable as the triplicate code, 
with 5/12 ≈ 42% fewer bits.  (& better with longer codes; 
overhead is O(logn) bits for n bit messages.)

error correcting codes
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models & reality

Sending a bit string over the network
n = 4 bits sent, each corrupted with probability 0.1
X = # of corrupted bits, X ~ Bin(4, 0.1)
In real networks, large bit strings (length n ≈ 104)
Corruption probability is very small: p ≈ 10-6

X ~ Bin(104, 10-6) is unwieldy to compute
Extreme n and p values arise in many cases

# bit errors in file written to disk  
# of typos in a book
# of elements in particular bucket of large hash table  
# of server crashes per day in giant data center
# facebook login requests sent to a particular server
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Siméon Poisson, 1781-1840

Poisson random variables

Suppose “events” happen, independently, at 
an average rate of λ per unit time.  Let X be  
the actual number of events happening in a 
given time unit.  Then X is a Poisson r.v. with 
parameter λ (denoted X ~ Poi(λ)) and has 
distribution (PMF):

Examples:
# of alpha particles emitted by a lump of radium in 1 sec.
# of traffic accidents in Seattle in one year
# of babies born in a day at UW Med center
# of visitors to my web page today

See B&T Section 6.2 for more on theoretical basis for Poisson.
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poisson  random variables
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X is a Poisson r.v. with parameter λ if it has PMF:

Is it a valid distribution?  Recall Taylor series:

So

poisson random variables
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expected value of  poisson r.v.s
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j = i-1

(Var[X] = λ, too; proof similar, see B&T example 6.20) 

As expected, given definition 
in terms of “average rate λ”

i = 0 term is zero



binomial random variable is poisson in the limit

Poisson approximates binomial when n is large, p is small, 
and λ = np is “moderate”

Different interpretations of “moderate,” e.g.
n > 20 and p < 0.05
n > 100 and p < 0.1

Formally, Binomial is Poisson in the limit as  
n → ∞ (equivalently, p → 0) while holding np =  λ
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X ~ Binomial(n,p)

I.e., Binomial ≈ Poisson for large n, small p, moderate i, λ.
Handy: Poisson has only 1 parameter–the expected # of successes

binomial → poisson in the limit
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sending data on a network, again

Recall example of sending bit string over a network
Send bit string of length n = 104

Probability of (independent) bit corruption is p = 10-6

X ~ Poi(λ = 104•10-6 = 0.01)
What is probability that message arrives uncorrupted?

Using Y ~ Bin(104, 10-6): 

P(Y=0) ≈ 0.990049829

I.e., Poisson approximation (here) is accurate to ~5 parts per billion
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expectation and variance of  a poisson

Recall:  if  Y ~ Bin(n,p), then:
E[Y] = pn
Var[Y] = np(1-p)

And if X ~ Poi(λ) where λ = np (n →∞, p → 0) then 

  E[X]   = λ  = np = E[Y]

  Var[X] = λ ≈ λ(1-λ/n) = np(1-p) = Var[Y]

Expectation and variance of Poisson are the same (λ)
Expectation is the same as corresponding binomial
Variance almost the same as corresponding binomial
Note: when two different distributions share the same  
mean & variance, it suggests (but doesn’t prove) that  
one may be a good approximation for the other.
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buffers

Suppose a server can process 2 requests per second
Requests arrive at random at an average rate of 1/sec 
Unprocessed requests are held in a buffer 
Q. How big a buffer do we need to avoid ever dropping a 
request?
A. Infinite
Q. How big a buffer do we need to avoid dropping a request 
more often than once a day?
A. (approximate)  If X is the number of arrivals in a second, 
then X is Poisson (λ=1).  We want b s.t.  
P(X > b) <  1/(24*60*60) ≈ 1.2 x 10-5

P(X = b) = e-1/b!      Σi≥8 P(X=i) ≈ P(X=8) ≈ 10-5, so b ≈ 8
Above necessary but not sufficient; also check prob of 10 arrivals in 2 seconds, 12 in 3, etc.   
See BT p366 for a possible approach to fully solving it.
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In a series X1, X2, ... of Bernoulli trials with success 
probability p, let Y be the index of the first success, i.e.,
     X1 = X2 = ... =  XY-1 = 0 & XY = 1
Then Y is a geometric random variable with parameter p.

Examples:
Number of coin flips until first head
Number of blind guesses on LSAT until I get one right
Number of darts thrown until you hit a bullseye
Number of random probes into hash table until empty slot
Number of wild guesses at a password until you hit it

P(Y=k) = (1-p)k-1p;   Mean 1/p;    Variance (1-p)/p2

geometric distribution
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☝ see slide 13; see also slide 83,  
     BT p105 for slick alt. proof



interlude: more on conditioning

Recall: conditional probability

    P(X | A) = P(X & A)/P(A)

Conditional probability is a probability, i.e.
1. it’s nonnegative
2. it’s normalized
3. it’s happy with the axioms, etc.

Define: The conditional expectation of X

E[X | A] = ∑x x•p(X = x | A)

I.e., the value of r.v. X averaged over outcomes where I 
know event A happened
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A note about notation: When X is an r.v., 
take this as either shorthand for  
“∀x P(X=x ...” or as defining the 
conditional PMF p(x|A) from the joint PMF



total expectation

Recall: the law of total probability

p(X) = p(X | A)•P(A) + p(X | Ac)•P(Ac)

I.e., unconditional probability is the weighted  
average of conditional probabilities, weighted  
by the probabilities of the conditioning events

The Law of Total Expectation

E[X] = E[X | A]•P(A) + E[X | Ac]•P(Ac)

I.e., unconditional expectation is the weighted average of 
conditional expectations, weighted by the probabilities of 
the conditioning events
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Again,  
“∀x P(X=x ...” or 
“unconditional PMF 
is weighted avg of 
conditional PMFs”



Proof of the Law of Total Expectation:

total expectation

82



geometric again

X ~ geo(p)

E[X] = E[X | X=1] • P(X=1) + E[X | X>1] • P(X>1)

        =       1         •   p        +  (1 + E[X]) • (1-p)

        ⋮          simple algebra

E[X] = 1/p

E.g., if p=1/2, expect to wait 2 flips for 1st head;  
         p=1/10, expect to wait 10 flips.

(Similar derivation for variance: (1-p)/p2 )
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memorylessness: after 
flipping one tail, remaining 
waiting time until 1st head 
is exactly the same as 
starting from scratch

cf. slide 79



balls in urns – the hypergeometric distribution

Draw d balls (without replacement) from an urn containing 
N, of which w are white, the rest black.  
Let X = number of white balls drawn

[note: (n choose k) = 0  if k < 0 or k > n]

E[X] = dp,   where p = w/N (the fraction of white balls)
proof: Let Xj be 0/1 indicator for j-th ball is white, X = Σ Xj

The Xj are dependent, but E[X] =  E[Σ Xj] = Σ E[Xj] = dp

Var[X] = dp(1-p)(1-(d-1)/(N-1))
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data mining

N ≈ 22500 human genes, many of unknown function
Suppose in some experiment, d =1588 of them were observed (say, 
they were all switched on in response to some drug)

A big question:  What are they doing?

One idea:  The Gene Ontology Consortium (www.geneontology.org) 
has grouped genes with known functions into categories such as 
“muscle development” or “immune system.”  Suppose 26 of your d 
genes fall in the “muscle development” category.  

Just chance?
Or call Coach (& see if he wants to dope some athletes)?

Hypergeometric: GO has 116 genes in the muscle development 
category.  If those are the white balls among 22500 in an urn, what is 
the probability that you would see 26 of them in 1588 draws?
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data mining

86

A differentially bound peak was associated to the closest gene (unique Entrez ID) measured by distance to TSS 
within CTCF flanking domains. OR: ratio of predicted to observed number of genes within a given GO category. 
Count: number of genes with differentially bound peaks. Size: total number of genes for a given functional 
group. Ont: the Geneontology. BP = biological process, MF = molecular function, CC = cellular component.

Cao, et al., Developmental Cell 18, 662–674, April 20, 2010

probability of seeing this many genes from 
a set of this size by chance according to 

the hypergeometric distribution.   
E.g., if you draw 1588 balls from an urn containing 490 white balls 

and ≈22000 black balls, P(94 white) ≈2.05×10-11

So, are genes flagged by this experiment specifically related to muscle development?  This 
doesn’t prove that they are, but it does say that there is an exceedingly small probability that 
so many would cluster in the “muscle development” group purely by chance.



Σ     =    ∞
i = -∞

Σmary
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random variables – summary

RV:  a numeric function of the outcome of an experiment

Probability Mass Function p(x): prob that RV = x; Σp(x)=1
Cumulative Distribution Function F(x):  probability that RV ≤ x
Generalize to joint distributions; independence & marginals
Expectation: 

mean, average, “center of mass,” fair price for a game of chance

of a random variable:  E[X] = Σx xp(x)
of a function:  if Y = g(X), then E[Y] = Σx g(x)p(x)
linearity: 

E[aX + b] = aE[X] + b
E[X+Y] = E[X] + E[Y]; even if dependent
this interchange of  “order of operations” is quite special to linear 
combinations.  E.g., E[XY]≠E[X]•E[Y], in general (but see below)
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(probability)-weighted  
average



random variables – summary

Conditional Expectation:

  E[X | A] = ∑x x•P(X=x | A)
Law of Total Expectation

E[X] = E[X | A]•P(A) + E[X | ¬ A]•P(¬ A)
Variance:  

Var[X] = E[ (X-E[X])2 ] = E[X2] - (E[X])2]
Standard deviation: σ = √Var[X]
Var[aX+b] = a2 Var[X]

If X & Y are independent, then 
E[X•Y] = E[X]•E[Y] 
Var[X+Y] = Var[X]+Var[Y] 
(These two equalities hold for indp rv’s; but not in general.)
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“Variance is insensitive to location, quadratic in scale”



random variables – summary

Important Examples:

Uniform(a,b): 

Bernoulli: P(X = 1) = p, P(X = 0) = 1-p  μ = p,   σ2= p(1-p)

Binomial:      μ = np, σ2 = np(1-p)

Poisson:     μ = λ,   σ2 = λ

Bin(n,p) ≈ Poi(λ) where λ = np fixed, n →∞ (and so p=λ/n → 0)

Geometric P(X = k) = (1-p)k-1p μ = 1/p, σ2 = (1-p)/p2

Many others, e.g., hypergeometric, negative binomial, …
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Poisson distributions have no value over negative numbers
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http://xkcd.com/12/


