3. Discrete Probability

CSE 312
Spring 2015
W.L. Ruzzo

Probability theory:

"an aberration of the intellect"

and

"ignorance coined into science"

John Stuart Mill

sample spaces

Sample space: S is a set of all potential outcomes of an experiment (often Ω in text books–Greek uppercase omega)

Coin flip: $S = \{Heads, Tails\}$

Flipping two coins: $S = \{(H,H), (H,T), (T,H), (T,T)\}$

Roll of one 6-sided die: $S = \{1, 2, 3, 4, 5, 6\}$

emails in a day: $S = \{x : x \in \mathbb{Z}, x \ge 0\}$

YouTube hrs. in a day: $S = \{x : x \in R, 0 \le x \le 24 \}$

Some fine print: "sample space" for an experiment isn't uniquely defined, & "potential" outcomes may include literally are impossible ones, e.g., $S=\{1,2,3,4,5,6,7\}$ for a 6-sided die; it's all OK if you're sensible and consistent, e.g., if you make probability(7)=0. Rare to see things quite this wacky, but bottom line: a sample space is just a set, any set.

Events: $\mathbf{E} \subseteq \mathbf{S}$ is an arbitrary subset of the sample space

```
Coin flip is heads: E = \{Head\}
At least one head in 2 flips: E = \{(H,H), (H,T), (T,H)\}
Roll of die is odd: E = \{1,3,5\}
# emails in a day < 20: E = \{x : x \in Z, 0 \le x < 20\}
# emails in a day is prime: E = \{2,3,5,7,11,13,...\}
Wasted day (>5 YT hrs): E = \{x : x \in R, x > 5\}
```

Note: an event is not an outcome, it is a <u>set</u> of outcomes. E.g., the outcome of rolling a die is always a <u>single</u> number in I..6; "roll is odd" aggregates 3 potential outcomes as one event; "roll is >5" aggregates I potential outcome as the event $E = \{6\}$ (a singleton set).

E and F are events in the sample space S

E and F are events in the sample space S

Event "E OR F", written $E \cup F$

$$S = \{1,2,3,4,5,6\}$$
 outcome of one die roll

$$E = \{1,2\}, F = \{2,3\}$$

 $E \cup F = \{1,2,3\}$

E and F are events in the sample space S

Event "E AND F", written E \cap F or EF

$$S = \{1,2,3,4,5,6\}$$
 outcome of one die roll

$$E = \{1,2\}, F = \{2,3\}$$

 $E \cap F = \{2\}$

E and F are events in the sample space S

 $EF = \emptyset \Leftrightarrow E,F$ are "mutually exclusive"

 $S = \{1,2,3,4,5,6\}$ outcome of one die roll

$$E = \{1,2\}, F = \{2,3\}, G = \{5,6\}$$

 $EF = \{2\}, not mutually$
exclusive, but E,G and F,G are

E and F are events in the sample space S

Event "not E," written \overline{E} or $\neg E$

 $S = \{1,2,3,4,5,6\}$ outcome of one die roll

$$E = \{1, 2\} \quad \neg E = \{3, 4, 5, 6\}$$

DeMorgan's Laws

$$\overline{E \cup F} = \bar{E} \cap \bar{F}$$

$$\overline{E \cap F} = \bar{E} \cup \bar{F}$$

Intuition: Probability as the relative frequency of an event

$$Pr(E) = \lim_{n\to\infty} (\# \text{ of occurrences of } E \text{ in n trials})/n$$

Mathematically, this proves messy to deal with.

Instead, we define "Probability" via a function from subsets of S ("events") to real numbers

$$\text{Pr: } 2^{\mathsf{S}} \to \mathbb{R}$$

satisfying the properties (axioms) below.

Intuition: Probability as the relative frequency of an event

 $Pr(E) = \lim_{n\to\infty} (\# \text{ of occurrences of } E \text{ in n trials})/n$

Axiom I (Non-negativity): $0 \le Pr(E)$

Axiom 2 (Normalization): Pr(S) = I

Axiom 3 (Additivity):

If E and F are mutually exclusive (EF = \emptyset), then

$$Pr(E \cup F) = Pr(E) + Pr(F)$$

For any sequence $E_1, E_2, ..., E_n$ of mutually exclusive events,

$$\Pr\left(\bigcup_{i=1}^n E_i\right) = \Pr(E_1) + \dots + \Pr(E_n)$$

implications of axioms

$$Pr(\overline{E}) = I - Pr(E)$$
 $I = Pr(S) = Pr(E \cup \overline{E}) = Pr(E) + Pr(\overline{E})$

If $E \subseteq F$, then $Pr(E) \leq Pr(F)$
 $Pr(F) = Pr(E) + Pr(F - E) \geq Pr(E)$
 $Pr(E \cup F) = Pr(E) + Pr(F) - Pr(EF)$
inclusion-exclusion
 $Pr(E) \leq I$
exercise

And many others

Sample space: S = set of all potential outcomes of experiment

E.g., flip two coins:
$$S = \{(H,H), (H,T), (T,H), (T,T)\}$$

Events: $\mathbf{E} \subseteq \mathbf{S}$ is an arbitrary subset of the sample space

$$\geq$$
I head in 2 flips: E = {(H,H), (H,T), (T,H)} S =

Probability:

A function from subsets of S to real numbers – $Pr: 2^S \to \mathbb{R}$

Probability Axioms:

Axiom I (Non-negativity):
$$0 \le Pr(E)$$

Axiom 2 (Normalization):
$$Pr(S) = I$$

Axiom 3 (Additivity):
$$EF = \emptyset \Rightarrow Pr(E \cup F) = Pr(E) + Pr(F)$$

equally likely outcomes

Simplest case: sample spaces with equally likely outcomes.

Coin flips: $S = \{Heads, Tails\}$

Flipping two coins: $S = \{(H,H),(H,T),(T,H),(T,T)\}$

Roll of 6-sided die: $S = \{1, 2, 3, 4, 5, 6\}$

$$Pr(each outcome) = \frac{1}{|S|}$$

In that case,

$$Pr(E) = \frac{\text{number of outcomes in } E}{\text{number of outcomes in } S} = \frac{|E|}{|S|}$$

Why? Axiom 3 plus fact that E = union of singletons in E

Roll two 6-sided dice. What is Pr(sum of dice = 7)?

$$S = \{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6)\}$$

Side point: *S* is small; can write out explicitly, but how would you visualize the analogous problem with 10³-sided dice?

$$E = \{ (6,1), (5,2), (4,3), (3,4), (2,5), (1,6) \}$$

$$Pr(sum = 7) = |E|/|S| = 6/36 = 1/6.$$

Roll two 6-sided dice. What is Pr(sum of dice = 7)?

```
S = \{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), \}
             (2,1), (2,2), (2,3), (2,4), (2,5), (2,6)
            (3,1), SIDEBAR
It's perhaps tempting to try S={2,3,...,12} and E={7}
             (4, I), for this problem. This isn't wrong, but note that it

    (5, I), doesn't fit the "equally likely outcomes" scenario.
    (6, I), E.g., Pr({2})=1/36 ≠ 1/6=Pr({7}). Plus, it's usually best to make "S" a simple representation of the

                     "experiment" at hand, e.g., an ordered pair reflecting
  E = \{ (6,1), \frac{\text{the 2 dice rolls, rather than a more complex derivative}}{1} \}
                      of it, like their sum. The later makes it easy to
                      express this event ("sum is 7"), but makes it difficult
Pr(sum = 7): or impossible to express other events of potential
                      interest ("product is odd," for example).
```

twinkies and ding dongs

4 Twinkies and 3 DingDongs in a bag. 3 drawn. What is Pr(one Twinkie and two DingDongs drawn)?

Ordered: (S ordered triple with 3 of 7 distinguishable objects)

- Pick 3, one after another: $|S| = 7 \cdot 6 \cdot 5 = 210$
- Pick Twinkie as either 1st, 2nd, or 3rd item:

$$|E| = (4 \cdot 3 \cdot 2) + (3 \cdot 4 \cdot 2) + (3 \cdot 2 \cdot 4) = 72$$

• Pr(ITwinkie and 2 DingDongs) = 72/210 = 12/35.

Unordered: (S unordered triple with 3 of 7 distinguishable objects)

- Grab 3 at once: $|S| = {7 \choose 3} = 35$
- $|E| = \binom{4}{1} \binom{3}{2} = 12$
- Pr(ITwinkie and 2 DingDongs) = 12/35.

Exercise: a 3rd way – S is ordered list of 7, E is "Ist 3 OK"; same answer?

birthdays

What is the probability that, of n people, none share the same birthday?

```
What are S, E??
```

$$|S| = (365)^n$$

$$|E| = (365)(364)(363)\cdots(365-n+1)$$

Pr(no matching birthdays) = |E|/|S|= $(365)(364)...(365-n+1)/(365)^n$

Some values of n...

n = 23: Pr(no matching birthdays) < 0.5

n = 77: Pr(no matching birthdays) < 1/5000

n = 90: Pr(no matching birthdays) < 1/162,000

n = 100: Pr(no matching birthdays) < 1/3,000,000

n = 150: Pr(...) < 1/3,000,000,000,000

$$n = 366$$
?

$$Pr = 0$$

Above formula gives this, since

$$(365)(364)...(365-n+1)/(365)^n == 0$$

when n = 366 (or greater).

Even easier to see via pigeon hole principle.

What is the probability that, of n people, none share

the same birthday as you?

$$|S| = (365)^n$$

$$|E| = (364)^n$$

Pr(no birthdays = yours)

 $= |E|/|S| = (364)^n/(365)^n$

Some values of n...

n = 23: Pr(no matching birthdays) ≈ 0.9388

n = 90: Pr(no matching birthdays) ≈ 0.7812

n = 253: Pr(no matching birthdays) ≈ 0.4995

Exercise: pⁿ is not linear, but red line looks straight. Why?

chip defect detection

n chips manufactured, one of which is defective k chips randomly selected from n for testing

What is Pr(defective chip is in k selected chips)?

$$|\mathbf{S}| = \binom{n}{k} \qquad |\mathbf{E}| = \binom{1}{1} \binom{n-1}{k-1}$$

Pr(defective chip is among k selected chips)

$$= \frac{\binom{1}{1}\binom{n-1}{k-1}}{\binom{n}{k}} = \frac{\frac{(n-1)!}{(k-1)!(n-k)!}}{\frac{n!}{k!(n-k)!}} = \frac{k}{n}$$

n chips manufactured, one of which is defective k chips randomly selected from n for testing

What is Pr(defective chip is in k selected chips)?

Different analysis:

- Select k chips at random by permuting all n chips and then choosing the first k.
- Let E_i = event that i^{th} selected chip is defective.
- Events $E_1, E_2, ..., E_k$ are mutually exclusive
- $Pr(E_i) = I/n \text{ for } i=1,2,...,k$
- Thus Pr(defective chip is selected)

$$= Pr(E_1) + \cdots + Pr(E_k) = k/n.$$

n chips manufactured, *two* of which are defective k chips randomly selected from n for testing

What is Pr(a defective chip is in k selected chips)?

$$|S| = {n \choose k} |E| = (I \text{ chip defective}) + (2 \text{ chips defective})$$
$$= {n \choose 1} {n-2 \choose k-1} + {n \choose 2} {n-2 \choose k-2}$$

Pr(a defective chip is in k selected chips)

$$= \frac{\binom{2}{1}\binom{n-2}{k-1} + \binom{2}{2}\binom{n-2}{k-2}}{\binom{n}{k}}$$

n chips manufactured, *two* of which are defective k chips randomly selected from n for testing

What is Pr(a defective chip is in k selected chips)?

Another approach:

Pr(a defective chip is in k selected chips) = I-Pr(none) Pr(none):

$$|S| = {n \choose k}, |E| = {n-2 \choose k}, Pr(\text{none}) = \frac{{n-2 \choose k}}{{n \choose k}}$$

Pr(a defective chip is in k selected chips) = $1 - \frac{\binom{n-2}{k}}{\binom{n}{k}}$ (Same as above? Check it!)

poker hands

5 card poker hands (ordinary 52 card deck, no jokers etc.) flush, I pair, 3 of a kind, 2 pairs, full house, ...

Sample Space?

Imagine sorted tableau of cards, pick 5:

$$|S| = {52 \choose 5}$$

any straight in poker

Consider 5 card poker hands.

A "straight" is 5 consecutive rank cards ignoring suit (Ace

low or high, but not both. E.g., A,2,3,4,5 or I0,J,Q,K,A)

What is Pr(straight)?

S as on previous slide,
$$|S| = {52 \choose 5}$$
 What's E?

E = Pick a col A, 2, ... 10, then 1 of 4 in next 5 cols (wrapping $K \rightarrow A$)

|E| =
$$10 \cdot {4 \choose 1}^5$$
 | Pr(straight) = $\frac{10 {4 \choose 1}^5}{{52 \choose 5}} \approx 0.00394$

card flipping

52 card deck. Cards flipped one at a time.

After first ace (of any suit) appears, consider next card

Pr(next card = ace of spades) < Pr(next card = 2 of clubs)?

Maybe, Maybe Not ...

S = all permutations of 52 cards, |S| = 52!

Event 1: Next = Ace of Spades.

Remove A♠, shuffle remaining 51 cards, add A♠ after first Ace

 $|E_1| = 51!$ (only I place $A \triangleq$ can be added)

Event 2: Next = 2 of Clubs

Do the same thing with $2\clubsuit$; E_1 and E_2 have same size

So,
$$Pr(E_1) = Pr(E_2) = 51!/52! = 1/52$$

Ace of Spades: 2/6

2 of Clubs: 2/6

Theory is the same for a 3-card deck; Pr = 2!/3! = 1/3

hats

hats

n persons at a party throw hats in middle, select at random. What is Pr(no one gets own hat)?

Pr(no one gets own hat) =
I - Pr(someone gets own hat)

Pr(someone gets own hat) = Pr($\bigcup_{i=1}^{n} E_i$), where E_i = event that person i gets own hat

$$Pr(\bigcup_{i=1}^{n} E_i) = \sum_{i} P(E_i) - \sum_{i < j} Pr(E_i E_j) + \sum_{i < j < k} Pr(E_i E_j E_k) \dots$$

hats: sample space

Visualizing the sample space S:

People:

P_1	P ₂	P_3	P_4	P_5
H_4	H_2	H ₅	H_1	H_3

I.e., a sample point is a permutation π of I, ..., n

$$|S| = n!$$

hats: events

$$E_i$$
 = event that person i gets own hat: $\pi(i) = i$

Counting single events:

i=2
? ? ?
$$\overset{\cdot}{\cdot}$$
 All points in E_2

$$|E_i| = (n-1)!$$
 for all i

Counting pairs:

$$E_i E_j : \pi(i) = i \& \pi(j) = j$$

$$|E_iE_i| = (n-2)!$$
 for all i, j

All points in
$$E_2 \cap E_5$$

n persons at a party throw hats in middle, select at random. What is Pr(no one gets own hat)?

 E_i = event that person i gets own hat

$$Pr(\bigcup_{i=1}^{n} E_i) = \sum_{i} P(E_i) - \sum_{i < j} Pr(E_i E_j) + \sum_{i < j < k} Pr(E_i E_j E_k) \dots$$

Pr(k fixed people get own back) = (n-k)!/n!

$$\binom{n}{k}$$
 times that = $\frac{n!}{k!(n-k)!} \frac{(n-k)!}{n!} = 1/k!$

Pr(none get own) = I-Pr(some do) =
$$I - I/I! + I/2! - I/3! + I/4! ... + (-I)^n/n! \approx I/e \approx .37$$

Pr(none get own) = I - Pr(some do) = $I - I + I/2! - I/3! + I/4! ... + (-I)^n/n! \approx e^{-I} \approx .37$

n

Sample spaces

Visualize!

Events

Set theory

Axioms

Simple identities

Equally likely outcomes (counting)

Examples

All good for building your skills

Birthdays is particularly important for applications

Hats is important as example of inclusion/exclusion