3. Discrete Probability

CSE 312
Spring 2015
W.L. Ruzzo

Probability theory:

"an aberration of the intellect"

and
"ignorance coined into science"

- John Stuart Mill

Sample space: S is a set of all potential outcomes of an experiment (often Ω in text books-Greek uppercase omega)

Coin flip:
Flipping two coins:

$$
S=\{\text { Heads, Tails }\}
$$

$$
\mathrm{S}=\{(\mathrm{H}, \mathrm{H}),(\mathrm{H}, \mathrm{~T}),(\mathrm{T}, \mathrm{H}),(\mathrm{T}, \mathrm{~T})\}
$$

Roll of one 6 -sided die: $S=\{1,2,3,4,5,6\}$
\# emails in a day:
$S=\{x: x \in Z, x \geq 0\}$
YouTube hrs. in a day: $S=\{x: x \in R, 0 \leq x \leq 24\}$

Some fine print: "sample space" for an experiment isn't uniquely defined, \& "potential" outcomes may include literally are impossible ones, e.g., $S=\{1,2,3,4,5,6,7\}$ for a 6 -sided die; it's all OK if you're sensible and consistent, e.g., if you make probability(7)=0. Rare to see things quite this wacky, but bottom line: a sample space is just a set, any set.

events

Events: $\mathbf{E} \subseteq \mathbf{S}$ is an arbitrary subset of the sample space
Coin flip is heads: $\quad E=\{$ Head $\}$
At least one head in 2 flips: $E=\{(H, H),(H, T),(T, H)\}$
Roll of die is odd: $E=\{1,3,5\}$
\# emails in a day < 20:
$E=\{x: x \in Z, 0 \leq x<20\}$
\# emails in a day is prime: $E=\{2,3,5,7, I I, I 3, \ldots\}$
Wasted day (>5YT hrs): $E=\{x: x \in R, x>5\}$
Note: an event is not an outcome, it is a set of outcomes. E.g., the outcome of rolling a die is always a single number in I..6; "roll is odd" aggregates 3 potential outcomes as one event; "roll is >5 " aggregates I potential outcome as the event $E=\{6\}$ (a singleton set).

E and F are events in the sample space S

E and F are events in the sample space S

Event "E OR F", written E \cup F

$$
S=\{1,2,3,4,5,6\}
$$

$$
E=\{1,2\}, F=\{2,3\}
$$

$$
E \cup F=\{I, 2,3\}
$$

E and F are events in the sample space S
Event "E AND F", written E \cap F or EF

$$
\begin{array}{cc}
S=\{I, 2,3,4,5,6\} & E=\{1,2\}, F=\{2,3\} \\
\text { outcome of one die roll } & E \cap F=\{2\}
\end{array}
$$

set operations on events

E and F are events in the sample space S

$$
\mathrm{EF}=\varnothing \Leftrightarrow \mathrm{E}, \mathrm{~F} \text { are "mutually exclusive" }
$$

$$
S=\{1,2,3,4,5,6\}
$$

outcome of one die roll

$$
E=\{I, 2\}, F=\{2,3\}, G=\{5,6\}
$$

$\mathrm{EF}=\{2\}$, not mutually
E and F are events in the sample space S
Event "not E ," written \bar{E} or $\neg E$

$S=\{1,2,3,4,5,6\}$
outcome of one die roll

$$
E=\{1,2\} \quad \neg E=\{3,4,5,6\}
$$

set operations on events

DeMorgan's Laws

$$
\overline{E \cup F}=\bar{E} \cap \bar{F}
$$

$$
\overline{E \cap F}=\bar{E} \cup \bar{F}
$$

probability

Intuition: Probability as the relative frequency of an event

$$
\operatorname{Pr}(E)=\lim _{n \rightarrow \infty}(\# \text { of occurrences of } E \text { in } n \text { trials }) / n
$$

Mathematically, this proves messy to deal with.

Instead, we define "Probability" via a function from subsets of
S ("events") to real numbers

$$
\operatorname{Pr}: 2^{S} \rightarrow \mathbb{R}
$$

satisfying the properties (axioms) below.

axioms of probability

Intuition: Probability as the relative frequency of an event

$$
\operatorname{Pr}(E)=\lim _{n \rightarrow \infty}(\# \text { of occurrences of } E \text { in } n \text { trials }) / n
$$

Axiom I (Non-negativity): $0 \leq \operatorname{Pr}(E)$
Axiom 2 (Normalization): $\operatorname{Pr}(S)=1$
Axiom 3 (Additivity):
If E and F are mutually exclusive $(E F=\varnothing)$, then

$$
\operatorname{Pr}(E \cup F)=\operatorname{Pr}(E)+\operatorname{Pr}(F)
$$

For any sequence $E_{1}, E_{2}, \ldots, E_{\mathrm{n}}$ of mutually exclusive events,

$$
\operatorname{Pr}\left(\bigcup_{i=1}^{n} E_{i}\right)=\operatorname{Pr}\left(E_{1}\right)+\cdots+\operatorname{Pr}\left(E_{n}\right)
$$

implications of axioms

$$
\begin{aligned}
& \operatorname{Pr}(\bar{E})=\text { I }-\operatorname{Pr}(E) \\
& \text { I }=\operatorname{Pr}(S)=\operatorname{Pr}(E \cup \bar{E})=\operatorname{Pr}(E)+\operatorname{Pr}(\bar{E}) \\
& \text { If } E \subseteq F \text {, then } \operatorname{Pr}(E) \leq \operatorname{Pr}(F) \\
& \operatorname{Pr}(F)=\operatorname{Pr}(E)+\operatorname{Pr}(F-E) \geq \operatorname{Pr}(E) \\
& \operatorname{Pr}(E \cup F)=\operatorname{Pr}(E)+\operatorname{Pr}(F)-\operatorname{Pr}(E F)
\end{aligned}
$$

inclusion-exclusion

$$
\operatorname{Pr}(E) \leq 1
$$

exercise

And many others

review

Sample space: $S=$ set of all potential outcomes of experiment
E.g., flip two coins: $\quad S=\{(\mathrm{H}, \mathrm{H}),(\mathrm{H}, \mathrm{T}),(\mathrm{T}, \mathrm{H}),(\mathrm{T}, \mathrm{T})\}$

Events: $\mathbf{E} \subseteq \mathbf{S}$ is an arbitrary subset of the sample space $\geq I$ head in 2 flips: $\quad E=\{(H, H),(H, T),(T, H)\}$

Probability:
A function from subsets of S to real numbers $-\operatorname{Pr}: 2^{S} \rightarrow \mathbb{R}$
Probability Axioms:
Axiom I (Non-negativity): $0 \leq \operatorname{Pr}(E)$
Axiom 2 (Normalization): $\operatorname{Pr}(S)=1$
Axiom 3 (Additivity): $E F=\varnothing \Rightarrow \operatorname{Pr}(E \cup F)=\operatorname{Pr}(E)+\operatorname{Pr}(F)$

equally likely outcomes

Simplest case: sample spaces with equally likely outcomes.

Coin flips:
Flipping two coins:
Roll of 6-sided die:
$\operatorname{Pr}($ each outcome $)=\frac{1}{|S|}$

In that case,

$$
\operatorname{Pr}(E)=\frac{\text { number of outcomes in } E}{\text { number of outcomes in } S}=\frac{|E|}{|S|}
$$

Why? Axiom 3 plus fact that $\mathrm{E}=$ union of singletons in E

rolling two dice

Roll two 6-sided dice. What is $\operatorname{Pr}($ sum of dice $=7)$?

$$
\begin{array}{rlrl}
S=\{ & (I, I),(I, 2),(I, 3),(I, 4),(I, 5),(I, 6), & & \text { Side point: } S \text { is } \\
& (2, I),(2,2),(2,3),(2,4),(2,5),(2,6), & & \text { small; can write } \\
& (3, I),(3,2),(3,3),(3,4),(3,5),(3,6), & & \text { out explicitly, but } \\
& (4, I),(4,2),(4,3),(4,4),(4,5),(4,6), & & \text { visualizould you } \\
& (5, I),(5,2),(5,3),(5,4),(5,5),(5,6), & & \text { analogous } \\
& (6, I),(6,2),(6,3),(6,4),(6,5),(6,6)\} & \begin{array}{l}
\text { problem with } 10^{3}- \\
\text { sided dice? }
\end{array} \\
E= & \{(6, I),(5,2),(4,3),(3,4),(2,5),(I, 6)\} & &
\end{array}
$$

$$
\operatorname{Pr}(\text { sum }=7)=|E| /|S|=6 / 36=1 / 6 .
$$

rolling two dice

Roll two 6-sided dice. What is $\operatorname{Pr}($ sum of dice $=7)$?

$$
\begin{aligned}
& S=\{(I, I),(I, 2),(I, 3),(I, 4),(I, 5),(I, 6), \\
& (2, I),(7), 173)(74) \text { (75) (76) } \\
& (3, I) \text {, } \\
& \text { It's perhaps tempting to try } S=\{2,3, \ldots, 12\} \text { and } E=\{7\} \\
& \text { (4, I), for this problem. This isn't wrong, but note that it } \\
& (5, I) \text {, doesn't fit the "equally likely outcomes" scenario. } \\
& (6,1) \text {, E.g., } \operatorname{Pr}(\{2\})=1 / 36 \neq 1 / 6=\operatorname{Pr}(\{7\}) \text {. Plus, it's usually } \\
& \text { best to make " } \mathrm{S} \text { " a simple representation of the } \\
& \text { "experiment" at hand, e.g., an ordered pair reflecting } \\
& E=\{(6, I), \text { the } 2 \text { dice rolls, rather than a more complex derivative } \\
& \text { of it, like their sum. The later makes it easy to } \\
& \text { express this event ("sum is 7"), but makes it difficult } \\
& \operatorname{Pr}(\text { sum }=7) \text { : or impossible to express other events of potential } \\
& \text { interest ("product is odd," for example). }
\end{aligned}
$$

twinkies and ding dongs

twinkies and ding dongs

4 Twinkies and 3 DingDongs in a bag. 3 drawn. What is Pr (one Twinkie and two DingDongs drawn) ?

Ordered:
(S ordered triple with 3 of 7 distinguishable objects)

- Pick 3, one after another: $|S|=7 \cdot 6 \cdot 5=210$
- Pick Twinkie as either $1^{\text {st }}, 2^{\text {nd }}$, or $3^{\text {rd }}$ item:

$$
|E|=(4 \cdot 3 \cdot 2)+(3 \cdot 4 \cdot 2)+(3 \cdot 2 \cdot 4)=72
$$

- $\operatorname{Pr}(I$ Twinkie and 2 DingDongs $)=72 / 2 I 0=12 / 35$.

Unordered: (S unordered triple with 3 of 7 distinguishable objects)

- Grab 3 at once: $|\mathrm{S}|=\binom{7}{3}=35$
- $|E|=\binom{4}{1}\binom{3}{2}=12$
- $\operatorname{Pr}(I$ Twinkie and 2 DingDongs $)=12 / 35$.

Exercise: a $3^{\text {rd }}$ way -S is ordered list of $7, \mathrm{E}$ is "Ist 3 OK"; same answer?

birthdays

What is the probability that, of n people, none share the same birthday?

What are S, E??

$$
\begin{aligned}
&|S|=(365)^{n} \\
&|E|=(365)(364)(363) \cdots(365-n+I) \\
& \operatorname{Pr}(\text { no matching birthdays) }=|E| /|S| \\
&=(365)(364) \ldots(365-n+I) /(365)^{n}
\end{aligned}
$$

Some values of n...
$\mathrm{n}=23: \operatorname{Pr}$ (no matching birthdays) <0.5
$\mathrm{n}=77: \operatorname{Pr}($ no matching birthdays $)<1 / 5000$
$\mathrm{n}=90: \operatorname{Pr}($ no matching birthdays) $<1 / 162,000$
$\mathrm{n}=100: \operatorname{Pr}$ (no matching birthdays) $<1 / 3,000,000$
$n=150: \operatorname{Pr}(\ldots)<1 / 3,000,000,000,000,000$
$n=366$?
$\operatorname{Pr}=0$

Above formula gives this, since

$$
(365)(364) \ldots(365-n+\mid) /(365)^{n}==0
$$

when $\mathrm{n}=366$ (or greater).
Even easier to see via pigeon hole principle.

birthdays

What is the probability that, of n people, none share the same birthday as you?

$$
\begin{aligned}
& |S|=(365)^{n} \\
& |E|=(364)^{n} \\
& \operatorname{Pr}(\text { no birthdays = yours }) \\
& =\left|E / /|S|=(364)^{n} /(365)^{n}\right.
\end{aligned}
$$

Some values of n...

$\mathrm{n}=23: \operatorname{Pr}($ no matching birthdays $) \approx 0.9388$
$\mathrm{n}=90$: $\operatorname{Pr}($ no matching birthdays $) \approx 0.7812$
$\mathrm{n}=253: \operatorname{Pr}($ no matching birthdays $) \approx 0.4995$
Exercise: p^{n} is not linear, but red line looks straight. Why?

chip defect detection

chip defect detection, a1

n chips manufactured, one of which is defective k chips randomly selected from n for testing

What is Pr (defective chip is in k selected chips) ?

$$
|S|=\binom{n}{k} \quad|E|=\binom{1}{1}\binom{n-1}{k-1}
$$

Pr (defective chip is among k selected chips)

$$
=\frac{\binom{1}{1}\binom{n-1}{k-1}}{\binom{n}{k}}=\frac{\frac{(n-1)!}{(k-1)!(n-k)!}}{\frac{n!}{k!(n-k)!}}=\frac{k}{n}
$$

n chips manufactured, one of which is defective k chips randomly selected from n for testing

What is Pr (defective chip is in k selected chips) ?
Different analysis:

- Select k chips at random by permuting all n chips and then choosing the first k.
- Let $\mathrm{E}_{\mathrm{i}}=$ event that $\mathrm{i}^{\text {th }}$ selected chip is defective.
- Events $\mathrm{E}_{1}, \mathrm{E}_{2}, \ldots, \mathrm{E}_{\mathrm{k}}$ are mutually exclusive
- $\operatorname{Pr}\left(E_{i}\right)=1 / n$ for $i=1,2, \ldots, k$
- Thus $\operatorname{Pr}($ defective chip is selected)

$$
=\operatorname{Pr}\left(\mathrm{E}_{\mathrm{l}}\right)+\cdots+\operatorname{Pr}\left(\mathrm{E}_{\mathrm{k}}\right)=\mathrm{k} / \mathrm{n} .
$$

chip defect detection, b1

n chips manufactured, two of which are defective k chips randomly selected from n for testing

What is $\operatorname{Pr}($ a defective chip is in k selected chips) ?
$|\mathrm{S}|=\binom{n}{k}|\mathrm{E}|=(\mathrm{I}$ chip defective $)+(2$ chips defective $)$
$=\binom{2}{1}\binom{n-2}{k-1}+\binom{2}{2}\binom{n-2}{k-2}$
$\operatorname{Pr}(\mathrm{a}$ defective chip is in k selected chips)

$$
=\frac{\binom{2}{1}\binom{n-2}{k-1}+\binom{2}{2}\binom{n-2}{k-2}}{\binom{n}{k}}
$$

chip defect detection, b2

n chips manufactured, two of which are defective k chips randomly selected from n for testing

What is Pr (a defective chip is in k selected chips) ?
Another approach:
$\operatorname{Pr}($ a defective chip is in k selected chips) $=\mathrm{I}-\operatorname{Pr}$ (none)
Pr (none):

$$
|S|=\binom{n}{k},|E|=\binom{n-2}{k}, \operatorname{Pr}(\text { none })=\frac{\binom{n-2}{k}}{\binom{n}{k}}
$$

$\operatorname{Pr}($ a defective chip is in k selected chips $)=1-\frac{\binom{n-2}{k}}{\binom{n}{k}}$
(Same as above? Check it!)

poker hands

poker hands

5 card poker hands (ordinary 52 card deck, no jokers etc.) flush, I pair, 3 of a kind, 2 pairs, full house, ...

Sample Space?

Imagine sorted tableau of cards, pick 5:

any straight in poker

Consider 5 card poker hands.
A "straight" is 5 consecutive
 rank cards ignoring suit (Ace low or high, but not both. E.g., A,2,3,4,5 or I0,J,Q,K,A) What is Pr (straight) ?

S as on previous slide, $|\mathrm{S}|=\binom{52}{5} \quad$ What's E ?
$E=$ Pick a col $A, 2, \ldots 10$, then I of 4 in next 5 cols (wrapping $K \rightarrow A$)

$$
|\mathrm{E}|=10 \cdot\binom{4}{1}^{5} \quad \operatorname{Pr}(\text { straight })=\frac{10\binom{4}{1}^{5}}{\binom{52}{5}} \approx 0.00394
$$

card flipping

52 card deck. Cards flipped one at a time.
After first ace (of any suit) appears, consider next card
Pr (next card = ace of spades) $<\operatorname{Pr}$ (next card = 2 of clubs) ?
Maybe, Maybe Not ...
$S=$ all permutations of 52 cards, $|S|=52$!
Event I: Next = Ace of Spades.
Remove A \downarrow, shuffle remaining 5 I cards, add A after first Ace
$\left|E_{1}\right|=5 I!$ (only I place A can be added)
Event 2: Next = 2 of Clubs
Do the same thing with $2 \boldsymbol{2} ; \mathrm{E}_{1}$ and E_{2} have same size

So,

$$
\operatorname{Pr}\left(\mathrm{E}_{1}\right)=\operatorname{Pr}\left(\mathrm{E}_{2}\right)=51!/ 52!=\mathrm{I} / 52
$$

Ace of Spades: 2/6 2 of Clubs: 2/6

Theory is the same for a 3 -card deck; $\operatorname{Pr}=2!/ 3!=1 / 3$
hats

n persons at a party throw hats in middle, select at random. What is Pr (no one gets own hat)?
$\operatorname{Pr}($ no one gets own hat) $=$
I - Pr(someone gets own hat)

$\operatorname{Pr}($ someone gets own hat $)=\operatorname{Pr}\left(\cup_{i=1}^{n} E_{i}\right)$, where
$E_{i}=$ event that person i gets own hat
$\operatorname{Pr}\left(\cup_{i=1}^{n} E_{i}\right)=\sum_{i} \operatorname{P}\left(E_{i}\right)-\sum_{i<j} \operatorname{Pr}\left(E_{i} E_{j}\right)+\sum_{i<j<k} \operatorname{Pr}\left(E_{i} E_{j} E_{k}\right) \ldots$

hats: sample space

Visualizing the sample space S :
People: Hats:

P_{1}	P_{2}	P_{3}	P_{4}	P_{5}
H_{4}	H_{2}	H_{5}	H_{1}	H_{3}

I.e., a sample point is a permutation π of I, \ldots, n

4	2	5	1	3

$|S|=n!$
$E_{i}=$ event that person i gets own hat: $\pi(i)=i$

Counting single events:

$\left|\mathrm{E}_{\mathrm{i}}\right|=(\mathrm{n}-\mathrm{I})$! for all i
Counting pairs:
$\mathrm{E}_{\mathrm{i}} \mathrm{E}_{\mathrm{j}}: \pi(\mathrm{i})=\mathrm{i} \& \pi(\mathrm{j})=\mathrm{j}$
$\left|E_{i} \mathrm{E}_{\mathrm{j}}\right|=(\mathrm{n}-2)$! for all i, j

All points in $E_{2} \cap E_{5}$
n persons at a party throw hats in middle, select at random. What is Pr (no one gets own hat)?
$E_{i}=$ event that person i gets own hat

$\operatorname{Pr}\left(\cup_{i=1}^{n} E_{i}\right)=\sum_{i} \operatorname{P}\left(E_{i}\right)-\sum_{i<j} \operatorname{Pr}\left(E_{i} E_{j}\right)+\sum_{i<j<k} \operatorname{Pr}\left(E_{i} E_{j} E_{k}\right) \ldots$
$\operatorname{Pr}(\mathrm{k}$ fixed people get own back) $=(n-k)!/ n!$
$\binom{n}{k}$ times that $=\frac{n!}{k!(n-k)!} \frac{(n-k)!}{n!}=I / k!$
$\operatorname{Pr}($ none get own $)=1-\operatorname{Pr}($ some do $)=$

$$
I-I / I!+I / 2!-I / 3!+I / 4!\ldots+(-I)^{n} / n!\approx I / e \approx .37
$$

$\operatorname{Pr}($ none get own $)=1-\operatorname{Pr}($ some do $)=$

$$
I-I+I / 2!-I / 3!+I / 4!\ldots+(-I)^{n} / n!\approx e^{-1} \approx .37
$$

Sample spaces
 Events
 \} Visualize!

Set theory

Axioms

Simple identities
Equally likely outcomes (counting)
Examples
All good for building your skills
Birthdays is particularly important for applications Hats is important as example of inclusion/exclusion

