Markov Inequality:
When to use it: If your variable is non-negative and you know its mean but can’t use its variance (or you don’t want to use variance), you can say that it is unlikely to take on a value that is many times larger than its mean (be larger than \(aE[X] \) where \(a \) is big).

For nonnegative random variable \(X \) and any \(a > 0 \),
\[
\Pr[X \geq a] \leq \frac{E[X]}{a}.
\]
Equivalently, for any \(b > 0 \),
\[
\Pr[X \geq bE[X]] \leq \frac{1}{b}.
\]

Chebyshev’s Inequality:
When to use it: If you know your variable’s mean and variance, you can say that it is unlikely to deviate too far from its mean in either direction (have a large value of \(|X - E[X]| \)), and this likelihood goes up with variance.

For any random variable \(X \) and any \(a > 0 \),
\[
\Pr[|X - E[X]| \geq a] \leq \frac{Var[X]}{a^2}.
\]
Equivalently, for any \(b > 0 \),
\[
\Pr[|X - E[X]| \geq bVar[X]] \leq \frac{1}{b^2Var[X]}.
\]
Notice that if \(Var[X] = \sigma^2 \) this becomes
\[
\Pr[|X - E[X]| \geq b\sigma] \leq \frac{1}{b^2}.
\]

Chernoff Bound:
Chernoff-type bounds take many forms. One example is:
When to use it: If your variable is distributed binomially, meaning it is the sum of independent Bernoullis (so \(X = \sum X_i \)), you can say that it is very unlikely that it is far from its mean in either direction.

For any random variable \(X \sim Bin(n, p) \) and any \(\delta \) between 0 and 1,
\[
\Pr[X > (1 + \delta)E[X]] \leq e^{-\frac{\delta^2 E[X]}{3}}
\]
\[
\Pr[X < (1 - \delta)E[X]] \leq e^{-\frac{\delta^2 E[X]}{2}}.
\]