A Demo or Two

May 18, 2015

Here are a few simple demonstrations illustrating important concepts from the course. Most use R; see R Quick Start for a quick introduction to R. You should be able to run these demos below by copying the R code shown below and pasting it into an R console window.

Laws Of Large Numbers: The Weak and Strong Laws of Large Numbers are important theoretical results, essentially guaranteeing that the average of a large number if independent samples from arbitrary distributions will converge to the expected value of such a variable. As a simple illustration of this, the following looks at averages of i.i.d. Uniform(0,1) random variables:

```r
# Helper Function: Running sum of a vector
runsum <- function(x){
  t <- x
  for(i in 2:length(t)){
    t[i]<- t[i-1]+t[i]
  }
  return(t)
}

# "Regression Towards the Mean"
# Plot the mean of an increasingly large sample of uniform RVs;
# it should converge to the mean
#
# Parameters:
# n = # samples,
# cex: controls point size,
# ksigma: if ksigma > 0, also plot +/- k*sigma envelope around the mean
#
rtm <- function(n=200,ksigma=2,cex=2,cmu='red',cavg='blue',csig='red'){
  v <- runif(n)
  mu <- 0.5
  sigma <- 1/sqrt(12)
  plot(v,pch='.',xlab='Trial number i',ylab='Sample i; Mean(1..i)',cex=cex)
  lines(c(1,n),c(mu,mu),col=cmu,lwd=1)
  points(1:n,runsum(v)/(1:n),type='l',col=cavg,lwd=2)
  if(ksigma>0){
    points(1:n, mu+ksigma*sigma/sqrt(1:n), type='l',lwd=1,col=csig,lty='dashed')
    points(1:n, mu-ksigma*sigma/sqrt(1:n), type='l',lwd=1,col=csig,lty='dashed')
    legend('bottomright', bty='n',
      legend = c("Sample Mean_n", "mu", paste("mu +/-",ksigma,"sigma")),
      col = c( cavg, cmu, csig),
      lwd = c( 2, 1, 1),
      lty = c( 'solid','solid', 'dashed')
  }
}
```
Another plot, with larger n:

Exercise: Do something similar for a different distribution (normal, exponential, Poisson,...) in place of uniform.
The Central Limit Theorem: Another very important result is the Central Limit Theorem: Not only does the value of the average of a large sample of independent random variables from arbitrary distributions converge to its expected limit (above), but the shape of the distribution of those averages also converges to a well-defined limit—namely, it is approximately normally distributed.

```
# Convergence of any whacky distrib to normal as in CLT
#
# Method: n-fold convolution of initial distribution with itself
#
# For the n-th convolution, we need both the (n-1)-st and the original distributions, so for convenience these are bundled into a list and returned, making a by-hand iteration simple:
# bundle1 <- clt(whacky=//*put your whacky distribution here*//)
# bundle2 <- clt(bundle1) # 2-fold convolution
# bundle3 <- clt(bundle2) # 3-fold convolution
#
# Parameters:
# bundle : initially NULL; subsequently, result of previous call
# plot = T to see plot
# verbose = T to annotate plot with mu, sigma, etc.
# bell = T to overlay bell curve
# whacky = vector of numbers representing relative probabilities of
# outcomes 1:length(whacky); irrelevant unless bundle == NULL
# cex = scale factor for point size
#
clt <- function(bundle=NULL, plot=T, verbose=T, bell=T,
whacky=c(1:10,9:0,rep(0,5),rep(5,10)), cex=NULL){
  if(is.null(bundle)){
    mywhack <- whacky/sum(whacky) # normalize
    bundle <- list(n=1,result=mywhack,start=mywhack) # bundle params/result
  }
  if(plot){
    len <- length(bundle$result)
    x <- (0:(len-1))/(len-1)
    y <- bundle$result
    plot(x,y,xlab='x-bar',ylab='Probability/Density',cex=cex,pch=19)
    mu <- sum(x*y)
    sig2 <- sum((x-mu)^2*y)
    sig <- sqrt(sig2)
    chatter <- ifelse(!verbose,'',paste(  
      '\nmu =', round(mu,2), 
      '\nsig =',round(sig,2), 
      '\nsig*sqrt(n) =', round(sig*sqrt(bundle$n),2), 
      '\nlen = ', length(x));
    text(.85,.8*max(bundle$result), paste('n =',bundle$n,chatter))
    if(bell){points(x,dnorm(x,mu,sig)/length(x),type='l',lwd=2,col='blue')}}
  return(list(
    n = bundle$n+1,
    result = convolve(bundle$result,rev(bundle$start),type='o'),
    start = bundle$start))
}

# Make a "movie" of above; if "file" is NULL, display to screen, else write a
# multi-page .pdf file. The "..." formal and actual parameters have a special
# meaning in R: accept extra named arguments to this function and pass them to
```
inner calls.
clt.movie <- function(filename = "central.limit.thm.movie.pdf", frames=50, ...){
opar<-(par(no.readonly=T); on.exit(par(opar))
if(!is.null(filename)){
 # noninteractive version: open .pdf graphics "device"
 pdf(filename, onefile=T, width=9, height=7)
} else {
 # interactive version: pause after each plot & ask to continue
 devAskNewPage(TRUE)
}
bundle <- clt(...)
for(i in 2:frames){
 # tweak cex to make dots smaller when there are more of them
 bundle <- clt(bundle, cex=(1-i/frames)*.6+.4, ...)
}
if(!is.null(filename))dev.off() # close .pdf
}

clt.movie(NULL, 4)
Exercises: The above should work for any discrete distribution defined on a finite number of points. Try it on some other ones. Try to find ones that make the convergence to the normal as slow as possible, say.