

continuous random variables

Discrete random variable: takes values in a finite or countable set, e.g.
$X \in\{1,2, \ldots, 6\}$ with equal probability
X is positive integer i with probability $2^{-\mathrm{i}}$

Continuous random variable: takes values in an uncountable set, e.g.
X is the weight of a random person (a real number)
X is a randomly selected point inside a unit square
X is the waiting time until the next packet arrives at the server
$f(x)$: the probability density function (or simply "density")

$\mathrm{P}(\mathrm{X} \leq \mathrm{a})=\mathrm{F}(\mathrm{x})$: the cumulative distribution function (or simply "distribution")
$\mathrm{P}(\mathrm{a}<\mathrm{X} \leq \mathrm{b})=\mathrm{F}(\mathrm{b})-\mathrm{F}(\mathrm{a})$
Need $f(x) \geq 0, \& \int_{-\infty}^{+\infty} f(x) d x(=F(+\infty))=1$
A key relationship:
$f(x)=\frac{d}{d x} F(x)$, since $F(a)=\int_{-\infty}^{a} f(x) d x$,

Densities are not probabilities
$P(X=a)=P(a \leq X \leq a)=F(a)-F(a)=0$
I.e., the probability that a continuous random variable falls at a specified point is zero

$$
\begin{aligned}
& P(a-\varepsilon / 2 \leq X \leq a+\varepsilon / 2)= \\
& F(a+\varepsilon / 2)-F(a-\varepsilon / 2) \\
& \quad \approx \varepsilon \cdot f(a)
\end{aligned}
$$

I.e., The probability that it falls near that point is proportional to the density; in a large random sample, expect more samples where density is higher (hence the name "density").

Much of what we did with discrete r.v.s carries over almost unchanged, with $\Sigma_{x} \ldots$ replaced by $\int \ldots \mathrm{dx}$

E.g.

For discrete r.v. $X, \quad E[X]=\Sigma_{x} \times P(x)$
For continuous r.v. $\mathbf{X}, E[X]=\int_{-\infty}^{\infty} x \cdot f(x) d x$
Why?
(a) We define it that way
(b) The probability that X falls "near" x, say within $x \pm d x / 2$, is $\approx f(x) d x$, so the "average" X should be $\approx \Sigma x f(x) \mathrm{dx}$ (summed over grid points spaced dx apart on the real line) and the limit of that as $d x \rightarrow 0$ is $\int x f(x) d x$

Let $f(x)= \begin{cases}1 & \text { for } 0<x<1 \\ 0 & \text { elsewhere }\end{cases}$

$$
F(a)=\int_{-\infty}^{a} f(x) d x
$$

$$
= \begin{cases}0 & \text { if } a \leq 0 \\ a & \text { if } 0<a \\ 1 & \text { if } 1<a\end{cases}
$$

$$
E[X]=\int_{-\infty}^{\infty} x f(x) d x=\int_{0}^{1} x d x=\left.\frac{x^{2}}{2}\right|_{0} ^{1}=\frac{1}{2}
$$

Linearity

$$
\begin{aligned}
& \mathrm{E}[\mathrm{aX}+\mathrm{b}]=\mathrm{aE}[\mathrm{X}]+\mathrm{b} \\
& \mathrm{E}[\mathrm{X}+\mathrm{Y}]=\mathrm{E}[\mathrm{X}]+\mathrm{E}[\mathrm{Y}]
\end{aligned}
$$

Functions of a random variable

$$
E[g(X)]=\int g(x) f(x) d x
$$

Definition is same as in the discrete case

$$
\operatorname{Var}[\mathrm{X}]=\mathrm{E}\left[(\mathrm{X}-\mu)^{2}\right] \text { where } \mu=\mathrm{E}[\mathrm{X}]
$$

Identity still holds:

$$
\operatorname{Var}[\mathrm{X}]=\mathrm{E}\left[\mathrm{X}^{2}\right]-(\mathrm{E}[\mathrm{X}])^{2}
$$

Let $f(x)= \begin{cases}1 & \text { for } 0<x<1 \\ 0 & \text { elsewhere }\end{cases}$

$E[X]=\int_{-\infty}^{\infty} x f(x) d x=\int_{0}^{1} x d x=\left.\frac{x^{2}}{2}\right|_{0} ^{1}=\frac{1}{2}$
$E\left[X^{2}\right]=\int_{-\infty}^{\infty} x^{2} f(x) d x=\int_{0}^{1} x^{2} d x=\left.\frac{x^{3}}{3}\right|_{0} ^{1}=\frac{1}{3}$
$\operatorname{Var}[X]=E\left[X^{2}\right]-(E[X])^{2}=\frac{1}{3}-\frac{1}{4}=\frac{1}{12} \quad(\sigma \approx 0.29)$

Continuous random variable X has density $f(x)$, and

$$
\begin{aligned}
& \operatorname{Pr}(a \leq X \leq b)=\int_{a}^{b} f(x) d x \\
& E[X]=\int_{-\infty}^{\infty} x \cdot f(x) d x \\
& E\left[X^{2}\right]=\int_{-\infty}^{\infty} x^{2} \cdot f(x) d x
\end{aligned}
$$

uniform random variable

$\mathrm{X} \sim \operatorname{Uni}(\alpha, \beta)$ is uniform in $[\alpha, \beta] f(x)= \begin{cases}\frac{1}{\beta-\alpha} & x \in[\alpha, \beta] \\ 0 & \text { otherwise }\end{cases}$
The Uniform Density Function Uni(0.5,1.0)

uniform random variable

$X \sim \operatorname{Uni}(\alpha, \beta)$ is uniform in $[\alpha, \beta]$

$$
f(x)= \begin{cases}\frac{1}{\beta-\alpha} & x \in[\alpha, \beta] \\ 0 & \text { otherwise }\end{cases}
$$

$$
\operatorname{Pr}(a \leq X \leq b)=\int_{a}^{b} f(x) d x \underset{\bigcap_{i f} \alpha \leq a \leq b \leq \beta}{ } \frac{b-a}{\beta-\alpha}
$$

$$
E[X]=\int_{-\infty}^{\infty} x \cdot f(x) d x=\frac{\alpha+\beta}{2}
$$

