



# continuous random variables





Discrete random variable: takes values in a finite or countable set, e.g.

 $X \in \{1, 2, ..., 6\}$  with equal probability

X is positive integer i with probability 2<sup>-i</sup>

*Continuous* random variable: takes values in an uncountable set, e.g.

X is the weight of a random person (a real number) X is a randomly selected point inside a unit square X is the waiting time until the next packet arrives at the server



f(x)

Densities are *not* probabilities

 $P(X = a) = P(a \le X \le a) = F(a)-F(a) = 0$ 

I.e., the probability that a continuous random variable falls *at* a specified point is *zero* 

$$P(a - \epsilon/2 \le X \le a + \epsilon/2) =$$

$$F(a + \epsilon/2) - F(a - \epsilon/2)$$

$$\approx \epsilon \cdot f(a)$$

$$a - \epsilon/2 = a + \epsilon/2$$

I.e., The probability that it falls *near* that point is proportional to the density; in a large random sample, expect more samples where density is higher (hence the name "density").

### sums and integrals; expectation

Much of what we did with discrete r.v.s carries over almost unchanged, with  $\Sigma_{x...}$  replaced by  $\int ... dx$ 

E.g.

For discrete r.v. X,  $E[X] = \sum_{x} xp(x)$ For continuous r.v. X,  $E[X] = \int_{-\infty}^{\infty} x \cdot f(x) dx$ 

Why?

- (a) We define it that way
- (b) The probability that X falls "near" x, say within  $x\pm dx/2$ , is  $\approx f(x)dx$ , so the "average" X should be  $\approx \Sigma xf(x)dx$  (summed over grid points spaced dx apart on the real line) and the limit of that as  $dx \rightarrow 0$  is  $\int xf(x)dx$

example Let  $f(x) = \begin{cases} 1 & \text{for } 0 < x < 1 \\ 0 & \text{elsewhere} \end{cases}$ f(x)0  $F(a) = \int_{-\infty}^{a} f(x) dx$ *F*(*x*)  $= \begin{cases} 0 & \text{if } a \le 0 \\ a & \text{if } 0 < a \le 1 \text{ (since } a = \int_0^a 1 dx) \\ 1 & \text{if } 1 < a \end{cases}$  $E[X] = \int_{-\infty}^{\infty} xf(x)dx = \int_{0}^{1} x \, dx = \frac{x^2}{2} \Big|_{0}^{1} = \frac{1}{2}$  $Var[X] = E[X^2] - (E[X])^2 = \frac{1}{3} - \frac{1}{4} = \frac{1}{12} \quad (\sigma \approx 0.29)$ 

### properties of expectation

## Linearity E[aX+b] = aE[X]+bstill true, just as for discrete E[X+Y] = E[X]+E[Y]Functions of a random variable $E[g(X)] = \int g(x)f(x)dx$

just as for discrete, but w/integral

Definition is same as in the discrete case  $Var[X] = E[(X-\mu)^2]$  where  $\mu = E[X]$ 

Identity still holds:  $Var[X] = E[X^2] - (E[X])^2$ 



Let 
$$f(x) = \begin{cases} 1 & \text{for } 0 < x < 1 \\ 0 & \text{elsewhere} \end{cases}$$
  
 $F(a) = \int_{-\infty}^{a} f(x)dx$   
 $= \begin{cases} 0 & \text{if } a \le 0 \\ a & \text{if } 0 < a \le 1 \text{ (since } a = \int_{0}^{a} 1dx) \end{cases}$   
 $E[X] = \int_{-\infty}^{\infty} xf(x)dx = \int_{0}^{1} x \, dx = \frac{x^{2}}{2} \Big|_{0}^{1} = \frac{1}{2}$   
 $E[X^{2}] = \int_{-\infty}^{\infty} x^{2}f(x)dx = \int_{0}^{1} x^{2} \, dx = \frac{x^{3}}{3} \Big|_{0}^{1} = \frac{1}{3}$   
 $\operatorname{Var}[X] = E[X^{2}] - (E[X])^{2} = \frac{1}{3} - \frac{1}{4} = \frac{1}{12} \quad (\sigma \approx 0.29)$ 

Continuous random variable X has density f(x), and

$$\Pr(a \le X \le b) = \int_{a}^{b} f(x) \, dx$$

$$E[X] = \int_{-\infty}^{\infty} x \cdot f(x) \, dx$$

$$E[X^2] = \int_{-\infty}^{\infty} x^2 \cdot f(x) \, dx$$



#### uniform random variable

