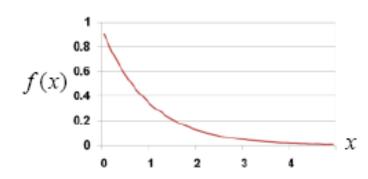
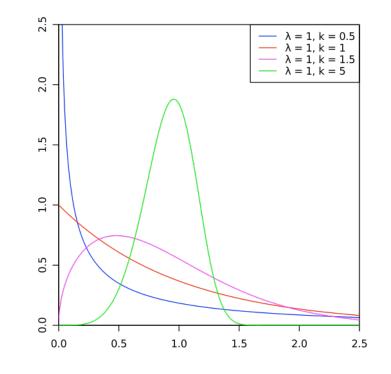


continuous random variables





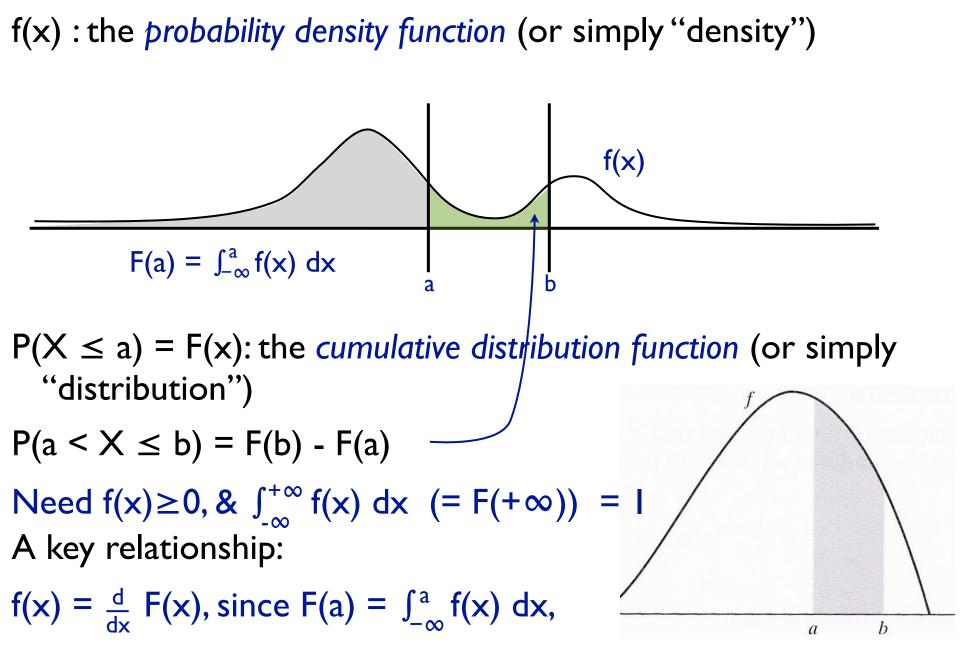
Discrete random variable: takes values in a finite or countable set, e.g.

 $X \in \{1, 2, ..., 6\}$ with equal probability

X is positive integer i with probability 2⁻ⁱ

Continuous random variable: takes values in an uncountable set, e.g.

X is the weight of a random person (a real number) X is a randomly selected point inside a unit square X is the waiting time until the next packet arrives at the server



f(x)

Densities are *not* probabilities

 $P(X = a) = P(a \le X \le a) = F(a)-F(a) = 0$

I.e., the probability that a continuous random variable falls *at* a specified point is *zero*

$$P(a - \epsilon/2 \le X \le a + \epsilon/2) =$$

$$F(a + \epsilon/2) - F(a - \epsilon/2)$$

$$\approx \epsilon \cdot f(a)$$

$$a - \epsilon/2 = a + \epsilon/2$$

I.e., The probability that it falls *near* that point is proportional to the density; in a large random sample, expect more samples where density is higher (hence the name "density").

sums and integrals; expectation

Much of what we did with discrete r.v.s carries over almost unchanged, with $\Sigma_{x...}$ replaced by $\int ... dx$

E.g.

For discrete r.v. X, $E[X] = \sum_{x} xp(x)$ For continuous r.v. X, $E[X] = \int_{-\infty}^{\infty} x \cdot f(x) dx$

Why?

- (a) We define it that way
- (b) The probability that X falls "near" x, say within $x\pm dx/2$, is $\approx f(x)dx$, so the "average" X should be $\approx \Sigma xf(x)dx$ (summed over grid points spaced dx apart on the real line) and the limit of that as $dx \rightarrow 0$ is $\int xf(x)dx$

example Let $f(x) = \begin{cases} 1 & \text{for } 0 < x < 1 \\ 0 & \text{elsewhere} \end{cases}$ f(x)0 $F(a) = \int_{-\infty}^{a} f(x) dx$ *F*(*x*) $= \begin{cases} 0 & \text{if } a \le 0 \\ a & \text{if } 0 < a \le 1 \text{ (since } a = \int_0^a 1 dx) \\ 1 & \text{if } 1 < a \end{cases}$ $E[X] = \int_{-\infty}^{\infty} xf(x)dx = \int_{0}^{1} x \, dx = \frac{x^2}{2} \Big|_{0}^{1} = \frac{1}{2}$ $Var[X] = E[X^2] - (E[X])^2 = \frac{1}{3} - \frac{1}{4} = \frac{1}{12} \quad (\sigma \approx 0.29)$

properties of expectation

Linearity E[aX+b] = aE[X]+bstill true, just as for discrete E[X+Y] = E[X]+E[Y]Functions of a random variable $E[g(X)] = \int g(x)f(x)dx$

just as for discrete, but w/integral

Definition is same as in the discrete case $Var[X] = E[(X-\mu)^2]$ where $\mu = E[X]$

Identity still holds: $Var[X] = E[X^2] - (E[X])^2$

Let
$$f(x) = \begin{cases} 1 & \text{for } 0 < x < 1 \\ 0 & \text{elsewhere} \end{cases}$$

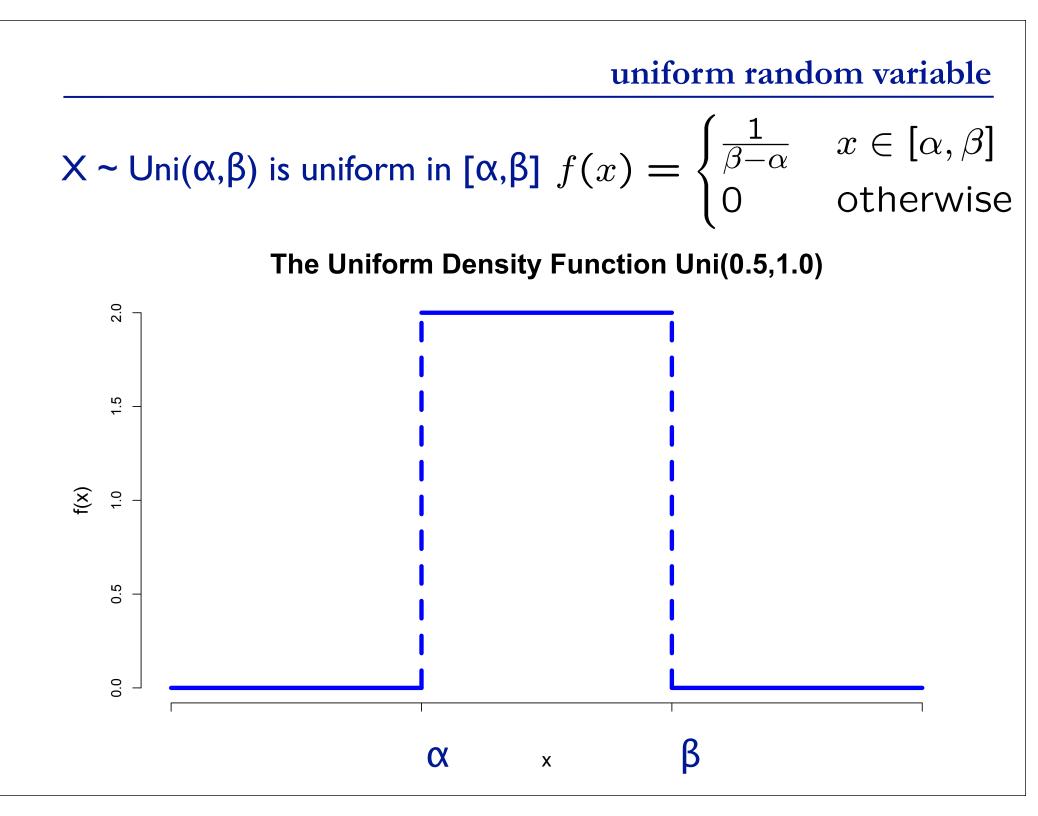
 $F(a) = \int_{-\infty}^{a} f(x)dx$
 $= \begin{cases} 0 & \text{if } a \le 0 \\ a & \text{if } 0 < a \le 1 \text{ (since } a = \int_{0}^{a} 1dx) \end{cases}$
 $E[X] = \int_{-\infty}^{\infty} xf(x)dx = \int_{0}^{1} x \, dx = \frac{x^{2}}{2} \Big|_{0}^{1} = \frac{1}{2}$
 $E[X^{2}] = \int_{-\infty}^{\infty} x^{2}f(x)dx = \int_{0}^{1} x^{2} \, dx = \frac{x^{3}}{3} \Big|_{0}^{1} = \frac{1}{3}$
 $\operatorname{Var}[X] = E[X^{2}] - (E[X])^{2} = \frac{1}{3} - \frac{1}{4} = \frac{1}{12} \quad (\sigma \approx 0.29)$

Continuous random variable X has density f(x), and

$$\Pr(a \le X \le b) = \int_{a}^{b} f(x) \, dx$$

$$E[X] = \int_{-\infty}^{\infty} x \cdot f(x) \, dx$$

$$E[X^2] = \int_{-\infty}^{\infty} x^2 \cdot f(x) \, dx$$



uniform random variable

