
continuous random variables



continuous random variables

Discrete random variable: takes values in a finite or countable 
set, e.g. 

X ∈ {1,2, ..., 6} with equal probability

X is positive integer i with probability 2-i

Continuous random variable: takes values in an uncountable 
set, e.g. 

X is the weight of a random person (a real number)
X is a randomly selected point inside a unit square
X is the waiting time until the next packet arrives at the 
server
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f(x) : the probability density function (or simply “density”)

P(X ≤ a) = F(x): the cumulative distribution function (or simply 
“distribution”)

P(a < X ≤ b) = F(b) - F(a)

A key relationship:

pdf  and cdf
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F(a) = ∫   f(x) dxa
−∞ b

f(x)

a

f(x) =     F(x), since F(a) = ∫   f(x) dx,a
−∞

d
dx

Need f(x)≥0, & ∫    f(x) dx  (= F(+∞))  = 1
-∞
+∞



Densities are not probabilities

P(X = a) = P(a ≤ X ≤ a) = F(a)-F(a) = 0

I.e., the probability that a continuous random variable falls at a 
specified point is zero

P(a - ε/2 ≤ X ≤ a + ε/2) = 

    F(a + ε/2) - F(a - ε/2) 

    ≈ ε • f(a) 

I.e., The probability that it falls near that point is proportional to the 
density; in a large random sample, expect more samples where density 
is higher (hence the name “density”).

densities
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a-ε/2  a  a+ε/2     

f(x)



Much of what we did with discrete r.v.s carries over almost 
unchanged, with Σx...  replaced by  ∫... dx

E.g.

For discrete r.v. X,        E[X] =  Σx xp(x)

For continuous r.v. X,

Why?
(a) We define it that way

(b) The probability that X falls “near” x, say within x±dx/2, is ≈f(x)dx, 
so the “average” X should be ≈ Σ xf(x)dx (summed over grid 
points spaced dx apart on the real line) and the limit of that as 
dx→0 is ∫xf(x)dx

sums and integrals; expectation
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example

Let

6

-1          0         1          2    

1

-1          0         1          2    

1

F(x)

f(x)



Linearity

	
 E[aX+b] = aE[X]+b

	
 E[X+Y] = E[X]+E[Y]

Functions of a random variable

	
 E[g(X)] = ∫g(x)f(x)dx

properties of  expectation
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still true, just as 
for discrete

just as for discrete, 
but w/integral



variance
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Definition is same as in the discrete case

   Var[X] = E[(X-μ)2]  where μ = E[X]

Identity still holds:
   Var[X] = E[X2] - (E[X])2  	
 	
 proof  “same”



example

Let
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continuous random variables: summary

 Continuous random variable X has density f(x), and 
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if α≤a≤b≤β: 


