random variables

$$
\begin{array}{llllllll}
\mathrm{T} & \mathrm{~T} & \mathrm{~T} & \mathrm{~T} & \mathrm{H} & \mathrm{~T} & \mathrm{H} & \mathrm{H}
\end{array}
$$

let $X=$ index of

A random variable X assigns a real number to each outcome in a probability space.

Ex.

Let H be the number of Heads when 20 coins are tossed
Let T be the total of 2 dice rolls
Let X be the number of coin tosses needed to see $1^{\text {st }}$ head
Note; even if the underlying experiment has "equally likely outcomes," the associated random variable may not

Outcome	H	$P(H)$
TT	0	$P(H=0)=I / 4$
TH	I	$\mathrm{P}(\mathrm{H}=\mathrm{I})=\mathrm{I} / 2$
HT	I	
HH	2	$\mathrm{P}(\mathrm{H}=2)=\mathrm{I} / 4$

20 balls numbered I, $2, \ldots, 20$

Draw 3 without replacement
Let $X=$ the maximum of the numbers on those 3 balls
What is $P(X \geq 17)$

$$
\begin{aligned}
& P(X=20)=\binom{19}{2} /\binom{20}{3}=\frac{3}{20}=0.150 \\
& P(X=19)=\binom{18}{2} /\binom{20}{3}=\frac{18 \cdot 17 / 2!}{20 \cdot 19 \cdot 18 / 3!} \approx 0.134
\end{aligned}
$$

$$
\sum_{i=17}^{20} P(X=i) \approx 0.508
$$

Alternatively:

$$
P(X \geq 17)=1-P(X<17)=1-\binom{16}{3} /\binom{20}{3} \approx 0.508
$$

Flip a (biased) coin repeatedly until $I^{\text {st }}$ head observed How many flips? Let X be that number.

$$
\begin{aligned}
& P(X=I)=P(H)=P \\
& P(X=2)=P(T H)=(I-P) P \\
& P(X=3)=P(T T H)=(1-P)^{2} P
\end{aligned}
$$

Check that it is a valid probability distribution:

$$
P\left(\bigcup_{i \geq 1}\{X=i\}\right)=\sum_{i \geq 1}(1-p)^{i-1} p=p \sum_{i \geq 0}(1-p)^{i}=p \frac{1}{1-(1-p))}=1
$$

probability mass functions

A discrete random variable is one taking on a countable number of possible values.
Ex:

$$
X=\text { sum of } 3 \text { dice, } 3 \leq X \leq 18, X \in N
$$

$$
Y=\text { index of } I^{\text {st }} \text { head in seq of coin flips, } I \leq Y, Y \in N
$$

$$
\mathrm{Z}=\text { largest prime factor of }(\mathrm{I}+\mathrm{Y}), \quad \mathrm{Z} \in\{2,3,5,7, \mathrm{II}, \ldots\}
$$

If X is a discrete random variable taking on values from a countable set $\mathrm{T} \subseteq \mathrm{R}$, then

$$
p(a)= \begin{cases}P(X=a) & \text { for } a \in T \\ 0 & \text { otherwise }\end{cases}
$$

is called the probability mass function. Note: $\sum_{a \in T} p(a)=1$

Let X be the number of heads observed in n coin flips

$$
P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}, \text { where } p=P(H)
$$

Probability mass function:

cumulative distribution function

The cumulative distribution function for a random variable X is the function $F: \mathbb{R} \rightarrow[0, I]$ defined by

$$
F(a)=P[X \leq a]
$$

Ex: if X has probability mass function given by:

$$
\begin{gathered}
p(1)=\frac{1}{4} \quad p(2)=\frac{1}{2} \quad p(3)=\frac{1}{8} \quad p(4)=\frac{1}{8} \\
F(a)= \begin{cases}0 & a<1 \\
\frac{1}{4} 1 \leq a<2 \\
\frac{3}{4} & 2 \leq a<3 \\
\frac{7}{8} & 3 \leq a<4 \\
1 & 4 \leq a\end{cases} \\
\hline
\end{gathered}
$$

For a discrete r.v. X with p.m.f. p(•), the expectation of X, aka expected value or mean, is

$$
E[X]=\Sigma_{x} \times p(x)
$$

average of random values, weighted
by their respective probabilities
For the equally-likely outcomes case, this is just the average of the possible random values of X

For unequally-likely outcomes, it is again the average of the possible random values of X, weighted by their respective probabilities

Ex I: Let $X=$ value seen rolling a fair die $p(1), p(2), \ldots, p(6)=1 / 6$

$$
E[X]=\sum_{i=1}^{6} i p(i)=\frac{1}{6}(1+2+\cdots+6)=\frac{21}{6}=3.5
$$

Ex 2: Coin flip; $\mathrm{X}=+\mathrm{I}$ if $\mathrm{H}($ win $\$ \mathrm{I})$, -I if T (lose $\$ \mathrm{I}$)

$$
E[X]=(+I) \cdot p(+I)+(-I) \cdot p(-I)=I \cdot(I / 2)+(-I) \cdot(I / 2)=0
$$

For a discrete r.v. X with p.m.f. $p(\cdot)$, the expectation of X, aka expected value or mean, is

$$
E[X]=\Sigma_{x} x p(x)
$$

average of random values, weighted by their respective probabilities

Another view: A gambling game. If X is how much you win playing the game once, how much would you expect to win, on average, per game when repeatedly playing?

Ex I: Let $X=$ value seen rolling a fair die $p(1), p(2), \ldots, p(6)=1 / 6$ If you win X dollars for that roll, how much do you expect to win?

$$
E[X]=\sum_{i=1}^{6} i p(i)=\frac{1}{6}(1+2+\cdots+6)=\frac{21}{6}=3.5
$$

Ex 2: Coin flip; $\mathrm{X}=+\mathrm{I}$ if $\mathrm{H}($ win $\$ \mathrm{I})$, -I if C (lose $\$ \mathrm{I}$)

$$
E[X]=(+I) \cdot p(+I)+(-I) \cdot p(-I)=I \cdot(I / 2)+(-I) \cdot(I / 2)=0
$$

"a fair game": in repeated play you expect to win as much as you lose. Long term net gain/loss $=0$.

Let X be the number of flips up to $\&$ including $I^{\text {st }}$ head observed in repeated flips of a biased coin. If I pay you \$I per flip, how much money would you expect to make?

$$
\begin{align*}
P(H) & =p ; \quad P(T)=1-p=q \\
p(i) & =p q^{i-1} \\
E(x) & =\sum_{i \geq 1} i p(i)=\sum_{i \geq 1} i p q^{i-1}=p \sum_{i \geq 1} i q^{i-1} \tag{*}
\end{align*}
$$

A calculus trick:

$$
\sum_{i \geq 1} i y^{i-1}=\sum_{i \geq 1} \frac{d}{d y} y^{i}=\sum_{i \geq 0} \frac{d}{d y} y^{i}=\frac{d}{d y} \sum_{i \geq 0} y^{i}=\frac{d}{d y} \frac{1}{1-y}=\frac{1}{(1-y)^{2}}
$$

So (*) becomes:
E.g.:

$$
E[X]=p \sum_{i \geq i} i q^{i-1}=\frac{p}{(1-q)^{2}}=\frac{p}{p^{2}}=\frac{1}{p}
$$

$\mathrm{p}=\mathrm{I} / 2$; on average head every $2^{\text {nd }}$ flip
$\mathrm{p}=\mathrm{I} / \mathrm{I}$; on average, head every $10^{\text {th }}$ flip.
How much
would you
pay to play?

expectation of a function of a random variable

Calculating $\mathrm{E}[\mathrm{g}(\mathrm{X})]$:
$\mathrm{Y}=\mathrm{g}(\mathrm{X})$ is a new r.v. Calc $\mathrm{P}[\mathrm{Y}=\mathrm{j}]$, then apply defn:
$X=$ sum of 2 dice rolls $Y=g(X)=X \bmod 5$

i	$P(i)=P[X=i]$	$i \cdot p(i)$
2	$I / 36$	$2 / 36$
3	$2 / 36$	$6 / 36$
4	$3 / 36$	$12 / 36$
5	$4 / 36$	$20 / 36$
6	$5 / 36$	$30 / 36$
7	$6 / 36$	$42 / 36$
8	$5 / 36$	$40 / 36$
9	$4 / 36$	$36 / 36$
10	$3 / 36$	$30 / 36$
11	$2 / 36$	$22 / 36$
12	$1 / 36$	$12 / 36$

j	$q(j)=P[Y=j]$	$j \bullet q(j)$
0	$4 / 36+3 / 36=7 / 36$	$0 / 36$
I	$5 / 36+2 / 36=7 / 36$	$7 / 36$
2	$1 / 36+6 / 36+1 / 36=8 / 36$	$16 / 36$
3	$2 / 36+5 / 36=7 / 36$	$21 / 36$
4	$3 / 36+4 / 36=7 / 36$	$28 / 36$

$E[Y]=\sum_{j} j q(j)=72 / 36=2$
$E[X]=\Sigma_{i} i p(i)=252 / 36=7$
expectation of a function of a random variable
Calculating $\mathrm{E}[\mathrm{g}(\mathrm{X})]$: Another way - add in a different order, using $\mathrm{P}[\mathrm{X}=. .$.$] instead of calculating \mathrm{P}[\mathrm{Y}=. .$.
$X=$ sum of 2 dice rolls
$Y=g(X)=X \bmod 5$

i	$P(i)=P[X=i]$	$g(i) \cdot p(i)$
2	$1 / 36$	$2 / 36$
3	$2 / 36$	$6 / 36$
4	$3 / 36$	$12 / 36$
5	$4 / 36$	$0 / 36$
6	$5 / 36$	$5 / 36$
7	$6 / 36$	$12 / 36$
8	$5 / 36$	$15 / 36$
9	$4 / 36$	$16 / 36$
10	$3 / 36$	$0 / 36$
11	$2 / 36$	$2 / 36$
12	$1 / 36$	$2 / 36$

j	$q(j)=P[Y=j]$	$j \bullet q(j)$
0	$4 / 36+3 / 36=7 / 36$	$0 / 36$
I	$5 / 36+2 / 36=7 / 36$	$7 / 36$
2	$1 / 36+6 / 36+1 / 36=8 / 36$	$16 / 36$
3	$2 / 36+5 / 36=7 / 36$	$21 / 36$
4	$3 / 36+4 / 36=7 / 36$	$28 / 36$
$E[Y]=\sum_{j} j q(j)=$		
$72 / 36$		

$E[g(X)]=\sum_{i} g(i) p(i)=72 / 36=2$

Above example is not a fluke.

Theorem: if $Y=g(X)$, then $E[Y]=\Sigma_{i} g\left(x_{i}\right) p\left(x_{i}\right)$, where
$x_{i}, i=I, 2, \ldots$ are all possible values of X.
Proof: Let $y_{j}, j=1,2, \ldots$ be all possible values of Y.

Note that $S_{i}=\left\{x_{i} \mid g\left(x_{i}\right)=y_{i}\right\}$ is a partition of the domain of g.

$$
\begin{aligned}
\sum_{i} g\left(x_{i}\right) p\left(x_{i}\right) & =\sum_{j} \sum_{i: g\left(x_{i}\right)=y_{j}} g\left(x_{i}\right) p\left(x_{i}\right) \\
& =\sum_{j} \sum_{i: g\left(x_{i}\right)=y_{j}} y_{j} p\left(x_{i}\right) \\
& =\sum_{j} y_{j} \sum_{i: g\left(x_{i}\right)=y_{j}} p\left(x_{i}\right) \\
& =\sum_{j} y_{j} P\left\{g(X)=y_{j}\right\} \\
& =E[g(X)]
\end{aligned}
$$

A \& B each bet $\$ 1$, then flip 2 coins:

HH	A wins \$2
HT	Each takes back $\$ 1$
TH	B wins \$2

Let X be A's net gain: $+I, 0,-I$, resp.:

$$
\begin{aligned}
& \mathrm{P}(\mathrm{X}=+1)=1 / 4 \\
& \mathrm{P}(\mathrm{X}=0)=1 / 2 \\
& \mathrm{P}(\mathrm{X}=-1)=1 / 4
\end{aligned}
$$

What is $E[X]$?

$$
\mathrm{E}[\mathrm{X}]=|\cdot| / 4+0 \cdot I / 2+(-I) \cdot I / 4=0
$$

What is $\mathrm{E}\left[\mathrm{X}^{2}\right]$?

Note:
 $E\left[X^{2}\right] \neq E[X]^{2}$

$$
\mathrm{E}\left[\mathrm{X}^{2}\right]=\left.\right|^{2} \cdot\left|/ 4+0^{2} \cdot\right| / 2+(-I)^{2} \cdot \mid / 4=I / 2
$$

properties of expectation

Linearity of expectation, I
For any constants $\mathrm{a}, \mathrm{b}: \mathrm{E}[\mathrm{aX}+\mathrm{b}]=\mathrm{aE}[\mathrm{X}]+\mathrm{b}$
Proof:

$$
\begin{aligned}
E[a X+b] & =\sum_{x}(a x+b) \cdot p(x) \\
& =a \sum_{x} x p(x)+b \sum_{x} p(x) \\
& =a E[X]+b
\end{aligned}
$$

Example:
Q: In the 2-person coin game above, what is $\mathrm{E}[2 \mathrm{X}+\mathrm{I}]$?
$A: E[2 X+I]=2 E[X]+I=2 \cdot 0+I=I$

Linearity, II

Let X and Y be two random variables derived from outcomes of a single experiment. Then

$$
E[X+Y]=E[X]+E[Y] \quad \text { True even if } X, Y \text { dependent }
$$

Proof: Assume the sample space S is countable. (The result is true without this assumption, but I won't prove it.) Let $\mathrm{X}(\mathrm{s}), \mathrm{Y}(\mathrm{s})$ be the values of these r.v.'s for outcome $s \in S$.
Claim: $E[X]=\sum_{s \in S} X(s) \cdot p(s)$
Proof: similar to that for "expectation of a function of an r.v.," i.e., the events " $\mathrm{X}=\mathrm{x}$ " partition S , so sum above can be rearranged to match the definition of $E[X]=\sum_{x} x \cdot P(X=x)$
Then:

$$
\begin{aligned}
E[X+Y] & =\sum_{s \in S}(X[s]+Y[s]) p(s) \\
& =\sum_{s \in S} X[s] p(s)+\Sigma_{s \in S} Y[s] p(s)=E[X]+E[Y]
\end{aligned}
$$

Example

$X=\#$ of heads in one coin flip, where $P(X=I)=p$.
What is $E(X)$?

$$
E[X]=I \cdot p+0 \cdot(I-p)=p
$$

Let $X_{i}, I \leq i \leq n$, be \# of H in flip of coin with $P\left(X_{i}=I\right)=p_{i}$
What is the expected number of heads when all are flipped?

$$
E\left[\Sigma_{i} X_{i}\right]=\Sigma_{i} E\left[X_{i}\right]=\Sigma_{i} p_{i}
$$

Special case: $p_{1}=p_{2}=\ldots=p$:
$E[\#$ of heads in n flips $]=p n$

Note:

Linearity is special!
It is not true in general that


```
E[X2] = E[X] }\mp@subsup{}{}{2
E[X/Y] = E[X] / E[Y]
E[asinh(X)] = asinh(E[X])
```

Alice \& Bob are gambling (again). $X=$ Alice's gain per flip:

$$
X= \begin{cases}+1 & \text { if Heads } \\ -1 & \text { if Tails }\end{cases}
$$

$E[X]=0$
... Time passes

Alice (yawning) says "let's raise the stakes"

$$
Y= \begin{cases}+1000 & \text { if Heads } \\ -1000 & \text { if Tails }\end{cases}
$$

$\mathrm{E}[\mathrm{Y}]=0$, as before.
Are you (Bob) equally happy to play the new game?
$\mathrm{E}[\mathrm{X}]$ measures the "average" or "central tendency" of X .
What about its variability?

Definition
The variance of a random variable X with mean $E[X]=\mu$ is $\operatorname{Var}[\mathrm{X}]=\mathrm{E}\left[(\mathrm{X}-\mu)^{2}\right]$, often denoted σ^{2}.

Alice \& Bob are gambling (again). $X=$ Alice's gain per flip:

$$
\begin{aligned}
X & = \begin{cases}+1 & \text { if Heads } \\
-1 & \text { if Tails }\end{cases} \\
\mathrm{E}[\mathrm{X}] & =0
\end{aligned}
$$

... Time passes

Alice (yawning) says "let's raise the stakes"

$$
Y= \begin{cases}+1000 & \text { if Heads } \\ -1000 & \text { if Tails }\end{cases}
$$

$\mathrm{E}[\mathrm{Y}]=0$, as before.

$$
\underline{\operatorname{Var}[Y]}=1,000,000
$$

Are you (Bob) equally happy to play the new game?
$E[X]$ measures the "average" or "central tendency" of X.
What about its variability?

Definition
The variance of a random variable X with mean $E[X]=\mu$ is $\operatorname{Var}[\mathrm{X}]=\mathrm{E}\left[(\mathrm{X}-\mu)^{2}\right]$, often denoted σ^{2}.

The standard deviation of X is $\sigma=\sqrt{\operatorname{Var}[\mathrm{X}]}$

mean and variance

$\mu=\mathrm{E}[X]$ is about location; $\sigma=\sqrt{\operatorname{Var}(X)}$ is about spread

Two games:
a) flip I coin, win $Y=\$ 100$ if heads, $\$$ - 100 if tails
b) flip 100 coins, win $Z=$ (\#(heads) $-\#($ tails $)$) dollars

Same expectation in both: $\mathrm{E}[\mathrm{Y}]=\mathrm{E}[\mathrm{Z}]=0$
Same extremes in both: max gain = \$100; max loss = \$100

But
variability is very different:

$\operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}$

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left[(X-\mu)^{2}\right] \\
& =\sum_{x}(x-\mu)^{2} p(x) \\
& =\sum_{x}\left(x^{2}-2 \mu x+\mu^{2}\right) p(x) \\
& =\sum_{x} x^{2} p(x)-2 \mu \sum_{x} x p(x)+\mu^{2} \sum_{x} p(x) \\
& =E\left[X^{2}\right]-2 \mu^{2}+\mu^{2} \\
& =E\left[X^{2}\right]-\mu^{2}
\end{aligned}
$$

Example:

What is $\operatorname{Var}[X]$ when X is outcome of one fair die?

$$
\begin{aligned}
E\left[X^{2}\right] & =1^{2}\left(\frac{1}{6}\right)+2^{2}\left(\frac{1}{6}\right)+3^{2}\left(\frac{1}{6}\right)+4^{2}\left(\frac{1}{6}\right)+5^{2}\left(\frac{1}{6}\right)+6^{2}\left(\frac{1}{6}\right) \\
& =\left(\frac{1}{6}\right)
\end{aligned}
$$

$E[X]=7 / 2$, so
$\operatorname{Var}(X)=\frac{91}{6}-\left(\frac{7}{2}\right)^{2}=\frac{35}{12}$

$\operatorname{Var}[\mathrm{aX}+\mathrm{b}]=\mathrm{a}^{2} \operatorname{Var}[\mathrm{X}]$

$$
\begin{aligned}
\operatorname{Var}(a X+b) & =E\left[(a X+b-a \mu-b)^{2}\right] \\
& =E\left[a^{2}(X-\mu)^{2}\right] \\
& =a^{2} E\left[(X-\mu)^{2}\right] \\
& =a^{2} \operatorname{Var}(X)
\end{aligned}
$$

$$
X=\left\{\begin{array}{llr}
+1 & \text { if Heads } & \mathrm{E}[\mathrm{X}]=0 \\
-1 & \text { if Tails } & \operatorname{Var}[\mathrm{X}]=\mathrm{I}
\end{array}\right.
$$

$$
Y= \begin{cases}+1000 & \text { if Heads } \\ -1000 & \text { if Tails }\end{cases}
$$

$$
\begin{aligned}
\mathrm{Y} & =1000 \mathrm{X} \\
\mathrm{E}[\mathrm{Y}] & =\mathrm{E}[1000 \mathrm{X}]=1000 \mathrm{E}[\mathrm{x}]=0 \\
\operatorname{Var}[\mathrm{Y}] & =\operatorname{Var}[1000 \mathrm{X}] \\
& =10^{6} \operatorname{Var}[\mathrm{X}]=10^{6}
\end{aligned}
$$

In general: $\quad \operatorname{Var}[\mathrm{X}+\mathrm{Y}] \neq \operatorname{Var}[\mathrm{X}]+\operatorname{Var}[\mathrm{Y}]$
Ex I:
Let $X= \pm I$ based on I coin flip
As shown above, $\mathrm{E}[\mathrm{X}]=0, \operatorname{Var}[\mathrm{X}]=1$
Let $Y=-X$; then $\operatorname{Var}[Y]=(-I)^{2} \operatorname{Var}[X]=I$
But $X+Y=0$, always, so $\operatorname{Var}[X+Y]=0$
Ex 2:
As another example, is $\operatorname{Var}[X+X]=2 \operatorname{Var}[X]$?

a zoo of (discrete) random variables

An experiment results in "Success" or "Failure"
X is a random indicator variable ($1=$ success, $0=$ failure)

$$
P(X=I)=P \text { and } P(X=0)=I-P
$$

X is called a Bernoulli random variable: $X \sim \operatorname{Ber}(P)$
$E[X]=E\left[X^{2}\right]=P$
$\operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}=p-p^{2}=p(I-p)$

Examples:
coin flip
random binary digit
whether a disk drive crashed

Consider n independent random variables $\mathrm{Y}_{\mathrm{i}} \sim \operatorname{Ber}(\mathrm{p})$
$X=\sum_{i} Y_{i}$ is the number of successes in n trials
X is a Binomial random variable: $X \sim \operatorname{Bin}(n, p)$

$$
P(X=i)=\binom{n}{i} p^{i}(1-p)^{n-i} \quad i=0,1, \ldots, n
$$

By Binomial theorem, $\quad \sum_{i=0}^{n} P(X=i)=1$
\# of heads in n coin flips
\# of I's in a randomly generated length n bit string \# of disk drive crashes in a 1000 computer cluster

$$
\begin{aligned}
\mathrm{E}[\mathrm{X}] & =\mathrm{pn} \\
\operatorname{Var}(\mathrm{X}) & =\mathrm{p}(\mathrm{I}-\mathrm{p}) \mathrm{n}
\end{aligned}
$$

binomial pmfs

PMF for $X \sim \operatorname{Bin}(10,0.5)$

PMF for $X \sim \operatorname{Bin}(10,0.25)$

binomial pmfs

PMF for $X \sim \operatorname{Bin}(30,0.5)$

PMF for $X \sim \operatorname{Bin}(30,0.1)$

mean and variance of the binomial

$$
\begin{aligned}
& E\left[X^{k}\right]=\sum_{i=0}^{n} i^{k}\binom{n}{i} p^{i}(1-p)^{n-i} \\
& =\sum_{i=1}^{n} i^{k}\binom{n}{i} p^{i}(1-p)^{n-i} \\
& \sum\binom{n}{i}=n\binom{n-1}{i-1} \\
& E\left[X^{k}\right]=n p \sum_{i=1}^{n} i^{k-1}\binom{n-1}{i-1} p^{i-1}(1-p)^{n-i} \\
& =n p \sum_{j=0}^{n-1}(j+1)^{k-1}\binom{n-1}{j} p^{j}(1-p)^{n-1-j} \\
& =n p E\left[(Y+1)^{k-1}\right]
\end{aligned}
$$

where Y is a binomial random variable with parameters $n-1, p$.
$\mathrm{k}=1$ gives: $\quad E[X]=n p ; \mathrm{k}=2$ gives $\mathrm{E}\left[\mathrm{X}^{2}\right]=\mathrm{np}[(\mathrm{n}-1) \mathrm{p}+1]$
hence: $\operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}$

$$
\begin{aligned}
& =n p[(n-1) p+1]-(n p)^{2} \\
& =n p(1-p)
\end{aligned}
$$

Independent random variables
Two random variables X and Y are independent if for every value i that X can take, and any value j that Y can take

$$
\operatorname{Pr}(\mathrm{X}=\mathrm{i}, \mathrm{Y}=\mathrm{j})=\operatorname{Pr}(\mathrm{X}=\mathrm{i}) \operatorname{Pr}(\mathrm{Y}=\mathrm{j})
$$

products of independent r.v.s

Theorem: If X \& Y are independent, then $\mathrm{E}[\mathrm{X} \cdot \mathrm{Y}]=\mathrm{E}[\mathrm{X}] \cdot \mathrm{E}[\mathrm{Y}]$ Proof:
Let $x_{i}, y_{i}, i=1,2, \ldots$ be the possible values of X, Y.

$$
\begin{aligned}
E[X \cdot Y] & =\sum_{i} \sum_{j} x_{i} \cdot y_{j} \cdot P\left(X=x_{i} \wedge Y=y_{j}\right) \\
& =\sum_{i} \sum_{j} x_{i} \cdot y_{j} \cdot P\left(X=x_{i}\right) \cdot P\left(Y=y_{j}\right) \\
& =\sum_{i} x_{i} \cdot P\left(X=x_{i}\right) \cdot\left(\sum_{j} y_{j} \cdot P\left(Y=y_{j}\right)\right) \\
& =E[X] \cdot E[Y]
\end{aligned}
$$

Note: NOT true in general; see earlier example $\mathrm{E}\left[\mathrm{X}^{2}\right] \neq \mathrm{E}[\mathrm{X}]^{2}$

Theorem: If $X \& Y$ are independent, then

$$
\operatorname{Var}[\mathrm{X}+\mathrm{Y}]=\operatorname{Var}[\mathrm{X}]+\operatorname{Var}[\mathrm{Y}]
$$

Proof: Let $\widehat{X}=X-E[X] \quad \widehat{Y}=Y-E[Y]$

$$
E[\widehat{\widehat{X}}]=0 \quad E[\widehat{\widehat{Y}}]=0
$$

$$
\operatorname{Var}[\widehat{X}]=\operatorname{Var}[X] \quad \operatorname{Var}[\widehat{Y}]=\operatorname{Var}[Y]
$$

$$
\operatorname{Var}[X+Y]=\operatorname{Var}[\widehat{X}+\widehat{Y}] \longleftrightarrow \operatorname{Var}(\mathrm{aX}+\mathrm{b})=\mathrm{a}^{2} \operatorname{Var}(\mathrm{X})
$$

$$
=E\left[(\widehat{X}+\widehat{Y})^{2}\right]-(E[\widehat{X}+\widehat{Y}])^{2}
$$

$$
=E\left[\widehat{X}^{2}+2 \widehat{X} \widehat{Y}+\widehat{Y}^{2}\right]-0
$$

$$
=E\left[\widehat{X}^{2}\right]+2 E[\widehat{X} \widehat{Y}]+E\left[\widehat{Y}^{2}\right]
$$

$$
=\operatorname{Var}[\widehat{X}]+0+\operatorname{Var}[\widehat{Y}]
$$

$$
=\operatorname{Var}[X]+\operatorname{Var}[Y]
$$

If $Y_{1}, Y_{2}, \ldots, Y_{n} \sim \operatorname{Ber}(p)$ and independent, then $X=\sum_{i=1}^{n} Y_{i} \sim \operatorname{Bin}(n, p)$.
$E[X]=E\left[\sum_{i=1}^{n} Y_{i}\right]=n E\left[Y_{1}\right]=n p$
$\operatorname{Var}[X]=\operatorname{Var}\left[\sum_{i=1}^{n} Y_{i}\right]=n \operatorname{Var}\left[Y_{1}\right]=n p(1-p)$

A RAID-like disk array consists of n drives, each of which will fail independently with probability p. Suppose it can operate effectively if at least one-half of its components function, e.g., by "majority vote." For what values of p is a 5 -component system more likely to operate effectively than a 3-component system?
$X_{5}=\#$ failed in 5-component system $\sim \operatorname{Bin}(5, p)$
$X_{3}=\#$ failed in 3-component system $\sim \operatorname{Bin}(3, p)$
$X_{5}=\#$ failed in 5-component system $\sim \operatorname{Bin}(5, p)$
$X_{3}=\#$ failed in 3-component system $\sim \operatorname{Bin}(3, p)$
$P(5$ component system effective $)=P\left(X_{5}<5 / 2\right)$

$$
\binom{5}{0} p^{0}(1-p)^{5}+\binom{5}{1} p^{1}(1-p)^{4}+\binom{5}{2} p^{2}(1-p)^{3}
$$

$\mathrm{P}(3$ component system effective $)=\mathrm{P}\left(\mathrm{X}_{3}<3 / 2\right)$

$$
\binom{3}{0} p^{0}(1-p)^{3}+\binom{3}{1} p^{1}(1-p)^{2}
$$

Calculation:
5-component system is better iff $p<1 / 2$

Binomial distribution: models \& reality

Sending a bit string over the network
$\mathrm{n}=4$ bits sent, each corrupted with probability 0.1
X = \# of corrupted bits, $X \sim \operatorname{Bin}(4,0.1)$
In real networks, large bit strings (length $n \approx 10^{4}$)
Corruption probability is very small: $p \approx 10^{-6}$

Extreme n and p values arise in many cases \# bit errors in file written to disk \# of typos in a book \# of elements in particular bucket of large hash table \# of server crashes per day in giant data center \# facebook login requests sent to a particular server

Limit of binomial

Binomial with parameters n and I / m. Define $\quad \lambda=n / m$

What is distribution of X, the number of successes?

$$
\operatorname{Pr}(X=0)=(1-1 / m)^{n} \approx e^{-\frac{n}{m}}=e^{-\lambda}
$$

$$
1-x \approx e^{-x} \quad \text { for } \mathrm{x} \text { small }
$$

$$
\operatorname{Pr}(X=1)=n \frac{1}{m}\left(1-\frac{1}{m}\right)^{n-1} \approx \frac{n}{m} e^{-\left(\frac{n}{m}\right)}=\lambda e^{-\lambda}
$$

Suppose "events" happen, independently, at an average rate of λ per unit time. Let X be the actual number of events happening in a given time unit. Then X is a Poisson r.v. with parameter λ (denoted $\mathrm{X} \sim \operatorname{Poi}(\lambda)$) and has distribution (PMF):

$$
P(X=i)=e^{-\lambda \frac{\lambda^{i}}{i!}}
$$

Siméon Poisson, I78I-I840

Examples:
\# of alpha particles emitted by a lump of radium in I sec.
\# of traffic accidents in Seattle in one year
\# of roadkill per mile on a highway.
\# of white blood cells in a blood suspension

Poisson random variables

X is a Poisson rev. with parameter λ if it has PMF:

$$
P(X=i)=e^{-\lambda \frac{\lambda^{i}}{i!}}
$$

Is it a valid distribution? Recall Taylor series:

$$
e^{\lambda}=\frac{\lambda^{0}}{0!}+\frac{\lambda^{1}}{1!}+\cdots=\sum_{0 \leq i} \frac{\lambda^{i}}{i!}
$$

So

$$
\sum_{0 \leq i} P(X=i)=\sum_{0 \leq i} e^{-\lambda} \frac{\lambda^{i}}{i!}=e^{-\lambda} \sum_{0 \leq i} \frac{\lambda^{i}}{i!}=e^{-\lambda} e^{\lambda}=1
$$

Poisson approximates binomial when n is large, p is small, and $\lambda=n p$ is "moderate"

Formally, Binomial is Poisson in the limit as
$\mathrm{n} \rightarrow \infty$ (equivalently, $\mathrm{p} \rightarrow 0$) while holding $\mathrm{np}=\lambda$

binomial \rightarrow Poisson in the limit

$X \sim \operatorname{Binomial}(\mathrm{n}, \mathrm{p})$

$$
\begin{aligned}
P(X=i) & =\binom{n}{i} p^{i}(1-p)^{n-i} \\
& =\frac{n!}{i!(n-i)!}\left(\frac{\lambda}{n}\right)^{i}\left(1-\frac{\lambda}{n}\right)^{n-i}, \text { where } \lambda=p n \\
& =\frac{n(n-1) \cdots(n-i+1)}{n^{i}} \frac{\lambda^{i}}{i!} \frac{(1-\lambda / n)^{n}}{(1-\lambda / n)^{i}} \\
& =\underbrace{\frac{n(n-1) \cdots(n-i+1)}{(n-\lambda)^{i}}}_{1} \frac{\lambda^{i}}{i!} \underbrace{(1-\lambda / n)^{n}} \\
& \approx \frac{\lambda^{i}}{i!} \cdot e^{-\lambda}
\end{aligned}
$$

I.e., Binomial \approx Poisson for large n, small p, moderate i, λ.

Recall example of sending bit string over a network Send bit string of length $n=10^{4}$
Probability of (independent) bit corruption is $p=10^{-6}$
$X \sim \operatorname{Poi}\left(\lambda=10^{4} \cdot 10^{-6}=0.01\right)$
What is probability that message arrives uncorrupted?

$$
P(X=0)=e^{-\lambda \frac{\lambda^{0}}{0!}}=e^{-0.01 \frac{0.01^{0}}{0!}} \approx 0.990049834
$$

Using $Y \sim \operatorname{Bin}\left(10^{4}, 10^{-6}\right):$
$P(Y=0) \approx 0.990049829$

expected value of Poisson r.v.s

$$
\begin{aligned}
E[X] & =\sum_{0 \leq i} i \cdot e^{-\lambda} \frac{\lambda^{i}}{i!} \\
& =\sum_{1 \leq i} i \cdot e^{-\lambda} \frac{\lambda^{i}}{i!} \\
& =\lambda e^{-\lambda} \sum_{1 \leq i} \frac{\lambda^{i-1}}{(i-1)!} \\
& =\lambda e^{-\lambda} \sum_{0 \leq j} \frac{\lambda^{j}}{j!} \\
& =\lambda e^{-\lambda} e^{\lambda}
\end{aligned}
$$

$$
=\lambda
$$

As expected, given definition in terms of "average rate λ "
$(\operatorname{Var}[\mathrm{X}]=\lambda$, too; proof similar, see B\&T example 6.20)

Recall: if $Y \sim \operatorname{Bin}(n, p)$, then:

$$
\begin{aligned}
& \mathrm{E}[\mathrm{Y}]=\mathrm{pn} \\
& \operatorname{Var}[\mathrm{Y}]=\mathrm{np}(\mathrm{I}-\mathrm{p})
\end{aligned}
$$

And if $X \sim \operatorname{Poi}(\lambda)$ where $\lambda=n p(n \rightarrow \infty, p \rightarrow 0)$ then

$$
\begin{aligned}
& \mathrm{E}[\mathrm{X}]=\lambda=\mathrm{np}=\mathrm{E}[\mathrm{Y}] \\
& \operatorname{Var}[\mathrm{X}]=\lambda \approx \lambda(\mathrm{I}-\lambda / \mathrm{n})=\mathrm{np}(\mathrm{I}-\mathrm{p})=\operatorname{Var}[\mathrm{Y}]
\end{aligned}
$$

Expectation and variance of Poisson are the same (λ)
Expectation is the same as corresponding binomial
Variance almost the same as corresponding binomial
Note: when two different distributions share the same mean \& variance, it suggests (but doesn't prove) that one may be a good approximation for the other.

In a series X_{1}, X_{2}, \ldots of Bernoulli trials with success probability p, let Y be the index of the first success, i.e.,

$$
X_{1}=X_{2}=\ldots=X_{Y-1}=0 \& X_{Y}=1
$$

Then Y is a geometric random variable with parameter p.
Examples:
Number of coin flips until first head
Number of blind guesses on SAT until I get one right Number of darts thrown until you hit a bullseye Number of random probes into hash table until empty slot Number of wild guesses at a password until you hit it
$P(Y=k)=(I-p)^{k-I} P ;$ Mean $I / P ;$ Variance $(I-p) / P^{2}$

Draw d balls (without replacement) from an urn containing N, of which w are white, the rest black.
Let $X=$ number of white balls drawn

$$
P(X=i)=\frac{\binom{w}{i}\binom{N-w}{d-i}}{\binom{N}{d}}, i=0,1, \ldots, d
$$

(note: n choose $\mathrm{k}=0$ if $\mathrm{k}<0$ or $\mathrm{k}>\mathrm{n}$)
$E[X]=d p$, where $p=w / N$ (the fraction of white balls)
proof: Let X_{j} be $0 / I$ indicator for j-th ball is white, $X=\Sigma X_{j}$
The X_{j} are dependent, but $E[X]=E\left[\Sigma X_{j}\right]=\Sigma E\left[X_{j}\right]=d p$
$\operatorname{Var}[\mathrm{X}]=\mathrm{dp}(\mathrm{I}-\mathrm{p})(\mathrm{I}-(\mathrm{d}-\mathrm{I}) /(\mathrm{N}-\mathrm{I}))$

Supreme Court case: Berghuis v. Smith

If a group is underrepresented in a jury pool, how do you tell?
Justice Breyer [Stanford Alum] opened the questioning by invoking the binomial theorem. He hypothesized a scenario involving "an urn with a thousand balls, and sixty are red, and nine hundred forty are black, and then you select them at random... twelve at a time." According to Justice Breyer and the binomial theorem, if the red balls were black jurors then "you would expect... something like a third to a half of juries would have at least one black person" on them.

- Justice Scalia's rejoinder: "We don't have any urns here."
- Should model this combinatorially
- Ball draws not independent trials (balls not replaced)
- Exact solution:
$\mathrm{P}($ draw 12 black balls $)=\binom{940}{12} /\binom{1000}{12} \approx 0.4739$
$\mathrm{P}($ draw ≥ 1 red ball $)=1-\mathrm{P}($ draw 12 black balls $) \approx 0.5261$
- Approximation using Binomial distribution
- Assume P(red ball) constant for every draw $=60 / 1000$
- $\mathrm{X}=\mathrm{\#}$ red balls drawn. $\mathrm{X} \sim \operatorname{Bin}(12,60 / 1000=0.06)$
- $P(X \geq 1)=1-P(X=0) \approx 1-0.4759=0.5240$

In Breyer's description, should actually expect just over half of juries to have at least one black person on them
$R V$: a numeric function of the outcome of an experiment
Probability Mass Function $p(x)$: prob that RV $=x ; \Sigma p(x)=1$
Cumulative Distribution Function $F(x)$: probability that RV $\leq x$
Expectation:
of a random variable: $E[X]=\Sigma_{x} \times p(x)$
of a function: if $Y=g(X)$, then $E[Y]=\Sigma_{x} g(x) p(x)$
linearity:

$$
\begin{aligned}
& E[a X+b]=a E[X]+b \\
& E[X+Y]=E[X]+E[Y] \text {; even if dependent } \\
& \text { this interchange of "order of operations" is quite special to linear } \\
& \text { combinations. } E . g . E[X Y] \neq E[X] * E[Y] \text {, in general (but see below) }
\end{aligned}
$$

Variance:
$\left.\operatorname{Var}[\mathrm{X}]=\mathrm{E}\left[(\mathrm{X}-\mathrm{E}[\mathrm{X}])^{2}\right]=\mathrm{E}\left[\mathrm{X}^{2}\right]-(\mathrm{E}[\mathrm{X}])^{2}\right]$
Standard deviation: $\sigma=\sqrt{\operatorname{Var}[X]}$
$\operatorname{Var}[\mathrm{aX}+\mathrm{b}]=\mathrm{a}^{2} \operatorname{Var}[\mathrm{X}]$
If $X \& Y$ are independent, then
$\mathrm{E}[\mathrm{X} \cdot \mathrm{Y}]=\mathrm{E}[\mathrm{X}] \cdot \mathrm{E}[\mathrm{Y}]$;
$\operatorname{Var}[\mathrm{X}+\mathrm{Y}]=\operatorname{Var}[\mathrm{X}]+\operatorname{Var}[\mathrm{Y}]$
(These two equalities hold for indp rv's; but not in general.)

Important Examples:
Bernoulli: $P(X=I)=p$ and $P(X=0)=I-p \quad \mu=p, \quad \sigma^{2}=p(I-p)$
Binomial: $P(X=i)=\binom{n}{i} p^{i}(1-p)^{n-i} \quad \mu=\mathrm{np}, \sigma^{2}=\mathrm{np}(1-\mathrm{p})$
Poisson: $P(X=i)=e^{-\lambda \frac{\lambda^{i}}{i!}} \quad \mu=\lambda, \sigma^{2}=\lambda$
$\operatorname{Bin}(\mathrm{n}, \mathrm{p}) \approx \operatorname{Poi}(\lambda)$ where $\lambda=n \mathrm{p}$ fixed, $\mathrm{n} \rightarrow \infty$ (and so $\mathrm{p}=\lambda / \mathrm{n} \rightarrow 0$)
Geometric $P(X=k)=(I-p)^{k-1} p \quad \mu=I / p, \sigma^{2}=(I-p) / p^{2}$
Many others, e.g., hypergeometric

