random variables




random variables

A random variable X assigns a real number to each outcome
in a probability space.

Ex.

Let H be the number of Heads when 20 coins are tossed
Let T be the total of 2 dice rolls
Let X be the number of coin tosses needed to see |t head

Note; even if the underlying experiment has “equally likely
outcomes,’ the associated random variable may not

Outcome H P(H)
T 0 | P(H=0)= 1/4
TH |
} PH=1) = 172
HT |
HH 2 | PH=2)= I/4




numbered balls

20 balls numbered I, 2,...,20
Draw 3 without replacement

Let X = the maximum of the numbers on those 3 balls
What is P(X = 17)

Px=20 = (J)/(%) = 2 —  0.150
P(X =19) = (128)/(230) = 201-81';-71432/!3! ~ 0.134

S22 P(X =1i) ~ 0.508

Alternatively:

P(X>17) = 1-P(X<17) = 1— (136>/ (230) ~ 0.508




first head

Flip a (biased) coin repeatedly until I** head observed
How many flips! Let X be that number.
PX=1)=P(H) =p
P(X=2) =P(TH) = (I-p)p
P(X=3) = P(TTH) = (1-p)*p

Check that it is a valid probability distribution:

'L'>1 z>0




probability mass functions

A discrete random variable is one taking on a countable
number of possible values.

Ex:
X =sum of 3dice, 3 <X <18, XeN
Y = index of It head in seq of coin flips, | <Y, YeN
Z = largest prime factor of (1+Y), Z€{2,3,5,7,11,...}

If X is a discrete random variable taking on values from a
countable set T C R, then

(a) = P(X =a) foraeT
pla 0 otherwise

is called the probability mass function. Note: S epla) =1




head count

Let X be the number of heads observed in n coin flips

P(X =k)= (})p"(1 —p)" %, where p=P(H)

Probability mass function:

n=2 n=28
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cumulative distribution function

The cumulative distribution function for a random variable X is
the function F: R—[0,1] defined by

[ F(a) = P[X<a] ]

Ex: if X has probability mass function given by:
p(1)=3 p2)=35 pB)=5 p@A) =3

F(a)

0a<l1 :
u *—>
7
P l=a<?2 ) —
il df
F(a) = %23a<3 —C
— pmf
7 <
g 3=a <4 F -—‘
| 4=a B I
1 2 3 4
NB: for discrete random variables, be careful about “<” vs “<” 7




expectation

For a discrete r.v. X with p.m.f. p(®), the expectation of X, aka expected
value or mean, is

_ average of random values, weighted
EDX] = Zoxp(¥) | g :

by their respective probabilities

For the equally-likely outcomes case, this is just the average of the
possible random values of X

For unequally-likely outcomes, it is again the average of the possible
random values of X, weighted by their respective probabilities

Ex |: Let X = value seen rolling a fair die p(l), p(2),...,p(6) = 1/6
BX]|=%0 ip(i)=2(14+2+--+6) =22 =35
Ex 2: Coin flip; X = +1 if H (win $1),-1 if T (lose $1)

E[X] = (+1)*p(+1) + (-1)*p(-1) = 1+(112) +(-1)(1/2) = 0




expectation

For a discrete r.v. X with p.m.f. p(*), the expectation of X, aka expected
value or mean, is

— average of random values, weighted
E[X] = 2x xp(x) by their respective probabilities

Another view: A gambling game. If X is how much you win playing
the game once, how much would you expect to win, on average, per

game when repeatedly playing?

Ex |: Let X = value seen rolling a fair die p(l), p(2),...,p(6) = 1/6
If you win X dollars for that roll, how much do you expect to win?

BX]=Y ipti)=L1+2+ - 4+6) =2 =35
Ex 2: Coin flip; X =+ if H (win $1),-1 if T (lose $1)
ELX] = (+1)*p(+1) + (-1)*p(-1) = 1+(1/2) +(-1)(1/2) = 0

“a fair game”’: in repeated play you expect to win as much as you
lose. Long term net gain/loss = 0.




first head

Let X be the number of flips up to & including |** head
observed in repeated flips of a biased coin. If | pay you $1
per flip, how much money would you expect to make!?

P(H) = p; P(I)=1-p=gq
p(i) = pg*
E(z) = Zz‘21 ip(1) = ZiZl ipg' = pzq;z1 "™t (%)

A calculus trick:

. 1
2w Zdyy_zdyy_dyzy dyl— T (1—y)?

1>1 1>1 7>0

So () becomes: T S
i p p 1
EIX| = =1 — - £ -
X p;zq (1-¢)2 p2 p How much
E.g. - would you
p=1/2; on average head every 2" flip pay to play?

p=1/10; on average, head every 10% flip.
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expectation of a function of a random variable

Calculating E[g(X)]:
Y=g(X) is a new r.v. Calc P[Y=j], then apply defn:

X = sum of 2 dice rolls

/

i | p(i) = PX=i] | ip(i)
2 1136 2136
3| 236 6/36
4 336 | 12/36 |
5 | 436> 20/36
6 | 5136 | 30/36
7| 636 | 42036
8 | 536 | 40/36
9 | 436 136/36
10| 33 30/36
1| 236 | 22136
12| 136 | 12136
E[X] = = ip(i) =|252/36

Y =g(X) =X mod 5

g

j q(j) = P[Y =] i*q())
0 4/36+3/36=7/36 | 0/36
| 5/36+2/36 =7/36 | 7/36

2 | 1/36+6/36+1/36 =8/36 | 16/36
3 2/36+5/36 =7/36 | 21/36
4 3/36+4/36 =7/36 | 28/36
E[Y] = % jq(j) = 72736
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expectation of a function of a random variable

Calculating E[g(X)]: Another way — add in a different order,
using P[X=...] instead of calculating P[Y=...]

X = sum of 2 dice rolls

i | p(i) = P[X=i] | g(i)*p()
2 1/36 2/36
3 2/36 6/36
4 3/36 12/36
<5 | 4/36 0/3
6 5/36 5/36
7 6/36 12/36
8 5/36 15/36
9 4/36 16/36
q0| 3736 0/
| 2/36 2/36
|12 1/36 2/36
E[g(X)] = 2i g()p(i) = 72736

A

Y = g(X) = X mod 5

j q(j) = P[Y =] i*q())
0 4/36+3/36=7/36 | 0/36
| 5/36+2/36 =7/36 | 7/36

2 | 1/36+6/36+1/36 =8/36 | 16/36
3 2/36+5/36 =7/36 | 21/36
4 3/36+4/36 =7/36 | 28/36
E[Y] = % jq(j) = 72736

12




expectation of a function of a random variable

Above example is not a fluke.

Theorem:ifY = g(X), then E[Y] = 2i g(xi)p(xi), where
xi, i = 1,2, ...are all possible values of X.

Proof: Let )’j,j = |, 2,...be all possible values of Y.

X & > Y Zg(xz)p(xz) = T 7 g(x;))p(x;)

J ugxi))=yj

=>_j f yjp(Xi)

J o ig(xi)=yj

= ZYJ Z p(xi)

1:g(x;) =)j

= Zy,-P{g(X) = yj}

Note that S; = { xi | g(xi)=y; } is a
partition of the domain of g. = E[g(X)]

13




properties of expectation

A & B each bet $1, then flip 2 coins:

HH

A wins $2

HT

TH

Each takes
back $1

1T

B wins $2

Let X be A’s net gain: +1,0, -1, resp.:

POX = +1) = 1/4
PX= 0)=1/2
PX = -1) = 1/4

What is E[X]?
E[X] = 1¢1/4+01/2 + (-1)*1/4 = 0
What is E[X?]?

E[X2] = 1201/4 + 02 1/2 + (-1)2+1/4 = |2

( )
Note:

E[X?] # E[X]2

\

14




properties of expectation

Linearity of expectation, |
For any constants a, b:[E[aX + b] = aE[X] + b]

Proof:
ElaX +b = » (ax+b)-p(z)
= Y ap(a)+bY p(x)
= aF[X]|+0
Example:

Q: In the 2-person coin game above, what is E[2X+1]?
A:E[2X+1] = 2E[X]+] =20+ | = |

15




properties of expectation

Linearity, Il

Let X andY be two random variables derived from
outcomes of a single experiment. Then

E[X+Y] = E[X] + E[Y] True even if X,Y dependent

Proof: Assume the sample space S is countable. (The result is true
without this assumption, but | won’t prove it.) Let X(s), Y(s) be the
values of these r.vs for outcome seS.

Claim: EF[X| = )" .o X(s)-p(s)

Proof: similar to that for “expectation of a function of an r.v.,” i.e., the
events “X=x"" partition S, so sum above can be rearranged to match

the definition of E|X| = > =z - P(X =x)
Then:
E[X+Y] = 2ses(X[s] +Y[s]) p(s)
= 2sesX[s] p(s) + 2sesY[s] p(s) = E[X] + E[Y]

16




properties of expectation

Example

X = # of heads in one coin flip, where P(X=1) = p.
What is E(X)?
E[X] = 1p+0<(l-p)=p
Let X, | <i < n, be # of H in flip of coin with P(Xi=1) = p;
What is the expected number of heads when all are flipped!?
E[2.Xi] = 2ZiE[X] = 2Zipi

Special case: py =p2=..=p:
E[# of heads in n flips] = pn

17




properties of expectation

Note:

Linearity is special!

It is not true in general that

X,
X,

E[X*Y] = E
E[X?] =E
E[X/Y] = E
E

X,

* E[Y]
2

| E[Y]

#~ counterexample above

asinh(X)] = asinh(E[X])

18




risk

Alice & Bob are gambling (again). X = Alice’s gain per flip:

B +1 if Heads
A = { —1 if Tails

E[X]=0
... Time passes

Alice (yawning) says “let’s raise the stakes”

v _ +1000 if Heads
o —1000 if Tails

E[Y] = 0, as before.
Are you (Bob) equally happy to play the new game!?

19




variance

E[X] measures the “average” or “central tendency” of X.
What about its variability?

-

N\

Definition A

The variance of a random variable X with mean E[X] = U is
Var[X] = E[(X-M)?], often denoted G2

J

20




risk

Alice & Bob are gambling (again). X = Alice’s gain per flip:

B +1 if Heads
A = { —1 if Tails

E[X] =0 Var[X] = |

... Time passes

Alice (yawning) says “let’s raise the stakes”

v _ +1000 if Heads
o —1000 if Tails

E[Y] = 0, as before. Var[Y] = 1,000,000

Are you (Bob) equally happy to play the new game!?

21




variance

E[X] measures the “average” or “central tendency” of X.
What about its variability?

" Definition A

The variance of a random variable X with mean E[X] = U is
Var[X] = E[(X-M)?], often denoted G2

N\ J

[ The standard deviation of X is @ = +/Var[X] ]

22




mean and variance

probability

probability

E[X] is about location; & = +/Var(X) is about spread

0.10 0.20 0.00 0.10 0.20

0.00

@ O0=2.2 # heads in 20 flips, p=.5

| | | | | | | | | | | | | | | | I | |
5

T 20 30 40 50 60 70 80 90 100
v

T
0

| # heads in 150 flips, p=.5

o=6./
>

...... l||II””H”HI““““I--
| | | | |

| | | | | | | | | | | | |
0 510 20 30 40 50 60 70 T 80 90 100
U
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example

Two games:

a) flip | coin,winY = $100 if heads, $-100 if tails

b) flip 100 coins, win Z = (#(heads) - #(tails)) dollars
Same expectation in both: E[Y] = E[Z] =0
Same extremes in both: max gain = $100; max loss = $100

- |05 0,5
. Q oy = 100
But - < 02=10
variability °
. © -~ =
IS very S - -
different: 3
o
o
sJ0r |I|H h|l| .....
o

-100 -50 0 50 100




properties of variance

Var(X) = E[X?] - (E[X])®

Var(X) = E[(X — p)’]
= Z(r — w)?p(x)

= Z(x — 2ux + p*)p(x)

= Zx px) — 2u Zw(x) + MZZP(’C)

_—:E[X] = O
= E[X*] — p*

25




another example

Example:
What is Var[X] when X is outcome of one fair die!

1= () 2(0) 50+ =) o)
(o

E[X] =7/2,s0

91 A 185
Var(X) = — - (5) -

26




properties of variance

[Var[ax+b] = aZVar[X]]

Var(aX + b) = E[(aX + b — au — b)z]
= E[a*(X — p)?]
:azE[(X — /4)2]

== 02Var(X )
+1 if Heads E[X]=0
—1 if Tails Var[X] = |
Y = 1000 X

+1000 if Heads

1000 if Tails _ ELY]=E[1000 X]= 1000 E[x] =0

Var[Y] =Var[ 1000 X]
=10%ar[X] = 10°

27




properties of variance

In general:  Var[X+Y] # Var[X] + Var[Y]

Ex I:
Let X = x| based on |

As shown above, E[X]

LetY = -X; then Var[Y]

coin flip

= 0,Var[X

= (-1)*Var

X]

But X+Y = 0, always, soVar[X+Y] =0

Ex 2:

As another example, is Var[ X+X] = 2Var[X]!

28




Prohahility

a zoo of (discrete) random variables

0.107
0.09¢
0.08¢
0.07¢
0.06¢
0.05¢
0.041
0.03¢
0.02¢
0.01¢
0.00-

0

10

20 30 40 50 60 70 80

Number of successes (k)

=10 Er=40 =70

—
o
|

o
o0

S
o)l

<
~

e
(Y

Relative expected frequency

o

|
0 2 4 6 8 10 12 14 16 18
Number of rare events per sample

90
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bernoulli random variables

An experiment results in “Success” or “Failure”
X is a random indicator variable (1=success, O=failure)
P(X=l)=p and P(X=0)=1-p
X is called a Bernoulli random variable: X ~ Ber(p)
E[X] = E[X*]=p
Var(X) = E[X?] - (E[X])* = p — p* = p(I-p)

Examples:
coin flip
random binary digit

whether a disk drive crashed

Jacob (aka James, Jacques)
Bernoulli, 1654 — 1705
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binomial random variables

Consider n independent random variables Y; ~ Ber(p)
X = 2,Yiis the number of successes in n trials
X is a Binomial random variable: X ~ Bin(n,p)

n

P(X =1i) = (Z,)pi(l—p)n_i i=0,1,....n

By Binomial theorem, » P(X =i)=1
Examples 1=0
# of heads in n coin flips
# of I's in a randomly generated length n bit string

# of disk drive crashes in a 1000 computer cluster

E[X] = pn
Var(X) = p(l-p)n + (proof below, twice)

31




binomial pmfs

PMF for X ~ Bin(10,0.5) PMF for X ~ Bin(10,0.25)

P(X=k)
0.15 0.20 0.25 0.30

0.10

0.05

0.00

P(X=k)
015 020 025  0.30
| | | |

0.10
|

0.05
|

mu‘
| T | | | |

0 2 4 6 8 10 0 2 4 6 8 10

0.00
|
b
|
|
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P(X=k)

0.05 0.10 0.15 0.20 0.25

0.00

binomial pmfs

PMF for X ~ Bin(30,0.5)

P(X=kK)

Ww+o
|I|||||||III|
[ [ [ [

10 156 20 25 30

k

0.05 0.10 0.15 0.20 0.25

0.00

PMF for X ~ Bin(30,0.1)

Ww+o

15 20 25 30
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mean and variance of the binomial

1"

Bl =Y # (] )pia - pr-

i=0

n 3
& [ N ¥ - usin
=Zlk(i)p:(l_p)n i g
1 _ AN =
= PYOEIGH
n
. w1 n—1 - gaexa
E[{\k] — NPZ!k 1 ( N )p: 1(1 . p)n i letting
5 >

= np ZU o8 l)k—l (N 7 l)pl(l o2 p)n—l—j

j=0
= npE[(Y + 1)*!]

where Y i1s a binomial random variable with parametersn — 1. p.

k=1 gives: E[X] =np ; k=2 gives E[X2]=np[(n-1)p+1]
hence: \,-'al.(/\f)z E[;X':] _ (E[X])E

—npl(n — Dp + 1] — (np)?

— I‘Ip(l — p)
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Independent random variables

Two random variables X andY are independent if for every
value i that X can take, and any value j thatY can take

Pr(X=i,Y=j) = Pr(X=i)Pr(Y=))

35




products of ndependent t.v.s

Theorem: If X &Y are independent, then E[X*Y] = E[X]*E[Y]
Proof:

Let x;,v;,72 = 1,2,... be the possible values of X,Y".

EX Y] = Zin-yj-P(X:xi/\Y:yj)

?independence
(

1

sz”P(X:%:)' (Z%"P(ij))
_ E[X]-E[Y]

Note: NOT true in general; see earlier example E[X?]=#E[X]?
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variance of zndependent t.v.s is additive
(Bienaymé, 1853)

Theorem: If X &Y are independent, then
Var[X+Y] =Var[X]+Var[Y]

Proof:let X = X — E[X] Y = Y - E[Y]
E[X] = 0 EY] = 0
Var[X] = Var[X] VarlY] = Var[Y]

~ A~ VI"Xb=Zva
Var[X+> X+ = (9

= E[(X+Y)? - (E[X +Y)])?
— FE[X?+4+2XY +Y? -0
— E[X?+2E[XY]+ E[Y?]

= Var|X|+ 0+ VarlY]
=  Var|X|+ VarlY]

Var| X + Y]

37




mean, variance of binomial r.v.s

If Y1,Y5,....,Y,, ~ Ber(p) and independent,
then X = > | Y; ~ Bin(n,p).

E[X] = E[Y, Yi] = nE[Y1] = np

Var[X] = Var]>_._, Y;] = nVar[Y1] = np(1 — p)

38




disk failures

A RAID-like disk array consists of n drives,
each of which will fail independently with
probability p. Suppose it can operate
effectively if at least one-half of its
components function, e.g., by “majority vote.”
For what values of p is a 5-component system more likely to
operate effectively than a 3-component system?

X = # failed in 5-component system ~ Bin(5, p)
X3 = # failed in 3-component system ~ Bin(3, p)

39




disk failures

X = # failed in 5-component system ~ Bin(5, p)
X3 = # failed in 3-component system ~ Bin(3, p)
P(5 component system effective) = P(Xs < 5/2)

(g)po(l —p)° + G)pl(l —p)*+ (Z)ﬁ(l —p)’
P(3 component system effective) = P(X3 < 3/2)

Calculation: 0.00 0.04 008

5-component system
is better iff p < /2

3 3 8 - 155
0 3 1 2 >
1— 1— 1 — S

(0)p e <1>p o \ _ >

P(majority functional)

n=3

n=5

0.0 0.2 0.4 0.6 0.8 1.0

[ I I I I I
0.0 0.2 0.4 0.6 0.8 1.0

P(one disk fails) 40




Binomial distribution: models & reality

Sending a bit string over the network
n = 4 bits sent, each corrupted with probability O. |
X = # of corrupted bits, X ~ Bin(4, 0.1)
In real networks, large bit strings (length n = 10%)
Corruption probability is very small:p = 10

Extreme n and p values arise in many cases

# bit errors in file written to disk
# of typos in a book

# of elements in particular bucket of large hash table
# of server crashes per day in giant data center

# facebook login requests sent to a particular server

41




Limit of binomial

Binomial with parameters n and |/m. Define A=n/m

What is distribution of X, the nhumber of successes?

PriX=0)=(1-1/m)"~e m=¢e*

for x small

e (m) = e

42




Poisson random variables

Suppose “events” happen, independently, at
an average rate of A per unit time. Let X be
the actual number of events happening in a
given time unit. Then X is a Poisson r.v. with
parameter A (denoted X ~ Poi(A)) and has
distribution (PMF):
P(X =i)=e 2

Examples:

\
\
] K
W
- 2 "-.‘\; = \ .
2\ Wy
R, 0 o) d
N\ I 8 5 |
‘ B Pk : é
et g
\ . . ,# . .‘1
&) N
3 - e i

Siméon Poisson, 1781-1840

# of alpha particles emitted by a lump of radium in | sec.

# of traffic accidents in Seattle in one year

# of roadkill per mile on a highway.

# of white blood cells in a blood suspension
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Poisson random variables

X is a Poisson r.v. with parameter A if it has PMF:

P(X =i) = e

2

s it a valid distribution? Recall Taylor series:

S PX =) =Y et e SN — e

0<z 0<1¢ 0<2

44




binomial random variable is Poisson in the limit

Poisson approximates binomial when n is large, p is small,
and A = np is “moderate”

Formally, Binomial is Poisson in the limit as
n — oo (equivalently,p — 0) while holding np = A

45




binomial — Poisson in the limit

X ~ Binomial(n,p)

A
Y

! ) n—1
: n.. é 1—é , Where A\ = pn
il(n—1)! \(n n
—A/n)"

—A/n)"

_J

A (
n' ( —A/n)’
(

l.e., Binomial = Poisson for large n, small p, moderate i, A.
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sending data on a network, again

Recall example of sending bit string over a network
Send bit string of length n = [0*
Probability of (independent) bit corruption is p = 10-¢
X ~ Poi(A = 10*10-¢=0.01)
What is probability that message arrives uncorrupted?

P(X =0) = e A2 = ¢~0010017 ) 990049834

UsingY ~ Bin(10%, 10-):
P(Y=0) ~ 0.990049829
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P(X=k)

binomial vs Poisson

0.10 0.20

0.00

B Binomial(10, 0.3)
B Binomial(100, 0.03)
B Poisson(3)

0 2

4

|
6 3 10
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expected value of Poisson t.v.s

. !

E 7 - e_>‘,—

, 7!
0<1 > i =0 term is zero

. A\

E 7 - e_>‘,—

7!

1<i

)\ < As expected, given definition
in terms of “average rate \”

(Var[X] = A, too; proof similar, see B&T example 6.20)
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expectation and variance of a poisson

Recall: if Y ~ Bin(n,p), then:
E[Y] = pn

Var[Y] = np(l-p)

And if X ~ Poi(A\) where A = np (n =00, p = 0) then

E[X] =A =np=E[Y]

Var[X] = A = A(I-A/n) = np(l-p) =Var[Y]
Expectation and variance of Poisson are the same (A)
Expectation is the same as corresponding binomial
Variance almost the same as corresponding binomial

Note: when two different distributions share the same
mean & variance, it suggests (but doesn’t prove) that
one may be a good approximation for the other.
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geometric distribution

In a series X, Xy, ... of Bernoulli trials with success
probability p, letY be the index of the first success, i.e.,

Xi=X2=..= X, =0& Xy =1
ThenY is a geometric random variable with parameter p.

Examples:
Number of coin flips until first head
Number of blind guesses on SAT until | get one right
Number of darts thrown until you hit a bullseye
Number of random probes into hash table until empty slot
Number of wild guesses at a password until you hit it

P(Y=k) = (I-p)*'p; Mean |/p; Variance (I-p)/p?
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balls in urns — the hypergeometric distribution
B&T, exercise 1.61

Draw d balls (without replacement) from an urn containing
N, of which w are white, the rest black. d ¢

Let X = number of white balls drawn
(D))
(3)

(note: n choose k=0 if k <0 or k > n)

P(X =) = i=01,....d

E[X] = dp, where p = w/N (the fraction of white balls)
proof: Let X; be 0/1 indicator for j-th ball is white, X = 2 X;
The X| are dependent, but E[X] = E[2 X] = 2 E[X{] = dp
Var[X] = dp(1-p)(1-(d-1)/(N-1))
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balls, urns and the supreme court

Supreme Court case: Berghuis v. Smith

If a group is underrepresented in a jury pool, how do you tell?

Justice Breyer [Stanford Alum] opened the questioning by
invoking the binomial theorem. He hypothesized a scenario
iInvolving “an urn with a thousand balls, and sixty are red,
and nine hundred forty are black, and then you select them
at random... twelve at a time.” According to Justice Breyer
and the binomial theorem, if the red balls were black jurors then
“you would expect... something like a third to a half of
juries would have at least one black person” on them.

- Justice Scalia’s rejoinder: “We don’t have any urns here.”

53




Justice Breyer meets CSE 312

- Should model this combinatorially
- Ball draws not independent trials (balls not replaced)

- EXxact solution: 040" /(1000
P(draw 12 black balls) = | , 1» | =0.4739
P(draw = 1 red ball) = 1 — P(draw 12 black balls) ~ 0.5261

- Approximation using Binomial distribution
« Assume P(red ball) constant for every draw = 60/1000
« X=%#red balls drawn. X~ Bin(12, 60/1000 = 0.06)
« PX21)=1-P(X=0)~1-0.4759 =0.5240

In Breyer's description, should actually expect just over half
of juries to have at least one black person on them
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random variables — summary

RV: a numeric function of the outcome of an experiment
Probability Mass Function p(x): prob that RV = x; 2p(x)=1
Cumulative Distribution Function F(x): probability that RV < x
Expectation:
of a random variable: E[X] = 2« xp(x)
of a function: ifY = g(X), then E[Y] = 2« g(X)p(x)
linearity:
E[aX + b] = aE[X] + b
E[X+Y] = E[X] + E[Y]; even if dependent
this interchange of “order of operations” is quite special to linear
combinations. E.g. E[XY]#E[X]*E[Y], in general (but see below)
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random variables — summary

Variance:
Var[X] = E[ (X-E[X])?] = E[X?] - (E[X])"]
Standard deviation: 0 = +/Var[X]
Var[aX+b] = a?Var[X]
If X &Y are independent, then
E[XY] = E[X]-E[Y];
Var[X+Y] =Var[X]+Var[Y]
(These two equalities hold for indp rv’s; but not in general.)
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random variables — summary

Important Examples:

Bernoulli: P(X=1) = p and P(X=0) = |-p u=p, 02=p(l-p)

Binomial: P(X =1) = (?)pi(l —p)"’ U = np, 02 = np(l-p)

Poisson: P(X =1i) = Q_A?—f U=A, O2=A
Bin(n,p) = Poi(A) where A = np fixed,n — 00 (and so p=A/n = 0)

Geometric P(X=k) = (I-p)«'p u=1/p,c%= (l-p)/p?

Many others, e.g., hypergeometric
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