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A random variable X assigns a real number to each outcome 
in a probability space.
 Ex.

Let H be the number of Heads when 20 coins are tossed
Let T be the total of 2 dice rolls
Let X be the number of coin tosses needed to see 1st head

Note; even if the underlying experiment has “equally likely 
outcomes,” the associated random variable may not 

Outcome H P(H)
TT 0 P(H=0) = 1/4
TH 1

 P(H=1) = 1/2
HT 1

 P(H=1) = 1/2

HH 2 P(H=2) = 1/4

}



20 balls numbered 1, 2, ..., 20
Draw 3 without replacement
Let X = the maximum of the numbers on those 3 balls

What is P(X ≥ 17) 

Alternatively:

 

numbered balls
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first head
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Flip a (biased) coin repeatedly until 1st head observed
How many flips?  Let X be that number.

P(X=1) = P(H)     = p
P(X=2) = P(TH)   = (1-p)p
P(X=3) = P(TTH) = (1-p)2p
...

Check that it is a valid probability distribution:



A discrete random variable is one taking on a countable 
number of possible values.
Ex:

X = sum of 3 dice,   3 ≤ X ≤ 18, X∈N
Y = index of 1st head in seq of coin flips,   1 ≤ Y,  Y∈N
Z = largest prime factor of (1+Y),    Z ∈ {2, 3, 5, 7, 11, ...}

If X is a discrete random variable taking on values from a 
countable set T ⊆ R, then

is called the probability mass function.  Note:

 

probability mass functions
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Let X be the number of heads observed in n coin flips

Probability mass function:

 

head count
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n = 2 n = 8
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The cumulative distribution function for a random variable X is 
the function F: →[0,1] defined by 

                        F(a) = P[X≤a]

Ex: if X has probability mass function given by:

cdf
pmf

 

cumulative distribution function

7NB: for discrete random variables, be careful about  “≤” vs “<”



For a discrete r.v. X with p.m.f. p(•), the expectation of X, aka expected 
value or mean, is

E[X] = Σx xp(x)

For the equally-likely outcomes case, this is just the average of the 
possible random values of X

For unequally-likely outcomes, it is again the average of the possible 
random values of X, weighted by their respective probabilities

Ex 1:  Let X = value seen rolling a fair die  p(1), p(2), ..., p(6) = 1/6

Ex 2:  Coin flip; X = +1 if H (win $1), -1 if T (lose $1)

  E[X] = (+1)•p(+1) + (-1)•p(-1) = 1•(1/2) +(-1)•(1/2) = 0

 

expectation
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average of random values, weighted 
by their respective probabilities



For a discrete r.v. X with p.m.f. p(•), the expectation of X, aka expected 
value or mean, is

E[X] = Σx xp(x)

Another view:  A gambling game.  If X is how much you win playing 
the game once, how much would you expect to win, on average, per 
game when repeatedly playing?

Ex 1:  Let X = value seen rolling a fair die  p(1), p(2), ..., p(6) = 1/6
If you win X dollars for that roll, how much do you expect to win?

Ex 2:  Coin flip; X = +1 if H (win $1), -1 if T (lose $1)
  E[X] = (+1)•p(+1) + (-1)•p(-1) = 1•(1/2) +(-1)•(1/2) = 0
“a fair game”: in repeated play you expect to win as much as you 
lose.  Long term net gain/loss = 0.

 

expectation
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average of random values, weighted 
by their respective probabilities



Let X be the number of flips up to & including 1st head 
observed in repeated flips of a biased coin.  If I pay you $1 
per flip, how much money would you expect to make?
  

A calculus trick:

So (*) becomes:

E.g.:
p=1/2;   on average head every   2nd flip
p=1/10; on average, head every 10th flip.
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first head

dy0/dy = 0

How much 
would you 
pay to play?



Calculating E[g(X)]:
Y=g(X) is a new r.v.  Calc P[Y=j], then apply defn:

       X = sum of 2 dice rolls                      Y = g(X) = X mod 5

 

expectation of  a function of  a random variable
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j q(j) = P[Y = j]q(j) = P[Y = j] j•q(j)-

0

1

2

3

4

4/36+3/36 =7/36 0/36-

5/36+2/36 =7/36 7/36-

1/36+6/36+1/36 =8/36 16/36-

2/36+5/36 =7/36 21/36-

3/36+4/36 =7/36 28/36-

72/36-

i p(i) = P[X=i] i•p(i)

2 1/36 2/36

3 2/36 6/36

4 3/36 12/36

5 4/36 20/36

6 5/36 30/36

7 6/36 42/36

8 5/36 40/36

9 4/36 36/36

10 3/36 30/36

11 2/36 22/36

12 1/36 12/36

252/36E[X] = Σi ip(i) = 252/36 = 7

E[Y] = Σj jq(j) =  72/36  = 2



Calculating E[g(X)]:  Another way – add in a different order, 
using P[X=...] instead of calculating P[Y=...]

       X = sum of 2 dice rolls                      Y = g(X) = X mod 5

 

expectation of  a function of  a random variable
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j q(j) = P[Y = j]q(j) = P[Y = j] j•q(j)-

0

1

2

3

4

4/36+3/36 =7/36 0/36-

5/36+2/36 =7/36 7/36-

1/36+6/36+1/36 =8/36 16/36-

2/36+5/36 =7/36 21/36-

3/36+4/36 =7/36 28/36-

72/36-

i p(i) = P[X=i] g(i)•p(i)

2 1/36 2/36

3 2/36 6/36

4 3/36 12/36

5 4/36 0/36

6 5/36 5/36

7 6/36 12/36

8 5/36 15/36

9 4/36 16/36

10 3/36 0/36

11 2/36 2/36

12 1/36 2/36

72/36E[g(X)] = Σi g(i)p(i) =    252/3= 2

E[Y] = Σj jq(j) =  72/36  = 2



Above example is not a fluke.

Theorem: if Y = g(X), then E[Y] = Σi g(xi)p(xi), where 
xi, i = 1, 2, ... are all possible values of X.
Proof: Let  yj, j = 1, 2, ... be all possible values of  Y.

 

expectation of  a function of  a random variable
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xi6

xi1

xi3

X Y
g

yj1

yj2
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yj3

Note that Sj = { xi | g(xi)=yj } is a 
partition of the domain of g.



 

properties of  expectation
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A & B each bet $1, then flip 2 coins:

Let X be A’s net gain: +1, 0, -1, resp.:

What is E[X]?

E[X]  = 1•1/4 + 0•1/2 + (-1)•1/4  =  0

What is E[X2]?

E[X2] = 12•1/4 + 02•1/2 + (-1)2•1/4 = 1/2

HH A wins $2
HT Each takes 

back $1TH
Each takes 
back $1

TT B wins $2

P(X = +1) = 1/4
P(X = 0) = 1/2
P(X = -1) = 1/4

Note:
 E[X2] ≠ E[X]2



 

15

properties of  expectation

Linearity of expectation, I

For any constants a, b:  E[aX + b] = aE[X] + b

Proof:

Example:
Q: In the 2-person coin game above, what is E[2X+1]?
A: E[2X+1] = 2E[X]+1 = 2•0 + 1 = 1



Linearity, II
Let  X and Y be two random variables derived from 
outcomes of a single experiment.  Then

Proof:  Assume the sample space S is countable.  (The result is true 
without this assumption, but I won’t prove it.)  Let X(s),  Y(s) be the 
values of these r.v.’s for outcome s∈S.
Claim:  

Proof: similar to that for “expectation of a function of an r.v.,” i.e., the 
events “X=x” partition S, so sum above can be rearranged to match 
the definition of 

Then:
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properties of  expectation

True even if X, Y dependentE[X+Y] = E[X] + E[Y]

E[X+Y] = Σs∈S(X[s] + Y[s]) p(s)
            = Σs∈SX[s] p(s) + Σs∈SY[s] p(s) = E[X] + E[Y]
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properties of  expectation

Example

X = # of heads in one coin flip, where P(X=1) = p.
What is E(X)?

E[X] = 1•p + 0 •(1-p) = p

Let Xi, 1 ≤ i ≤ n,  be # of H in flip of coin with P(Xi=1) = pi

What is the expected number of heads when all are flipped?
E[ΣiXi] = ΣiE[Xi] = Σipi

Special case: p1 = p2 = ... = p : 
E[# of heads in n flips] = pn
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properties of  expectation

Note:
Linearity is special!
It is not true in general that 

E[X•Y]	

= E[X] • E[Y]
E[X2] 	

 = E[X]2

E[X/Y] 	

= E[X] / E[Y]
E[asinh(X)] = asinh(E[X])
	

 •
	

 •
	

 •

← counterexample  above
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risk

Alice & Bob are gambling (again).  X = Alice’s gain per flip:

E[X] = 0

                      . . .   Time passes   . . .

Alice (yawning) says “let’s raise the stakes”

E[Y] = 0, as before.   
Are you (Bob) equally happy to play the new game?



variance
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E[X] measures the “average” or “central tendency” of X.
What about its variability?

Definition
The variance of a random variable X with mean E[X] = μ is
Var[X] = E[(X-μ)2], often denoted σ2.
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risk

Alice & Bob are gambling (again).  X = Alice’s gain per flip:

E[X] = 0	

 	

 	

 	

 	

 Var[X] = 1

                      . . .   Time passes   . . .

Alice (yawning) says “let’s raise the stakes”

E[Y] = 0, as before.   	

	

 	

 	

 Var[Y] = 1,000,000
Are you (Bob) equally happy to play the new game?



variance
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E[X] measures the “average” or “central tendency” of X.
What about its variability?

Definition
The variance of a random variable X with mean E[X] = μ is
Var[X] = E[(X-μ)2], often denoted σ2.

The standard deviation of X is σ = √Var[X]



 

mean and variance

μ = E[X] is about location; σ = √Var(X) is about spread
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σ≈2.2 

σ≈6.1

μ

μ

# heads in 20 flips, p=.5

# heads in 150 flips, p=.5



 

example

Two games:
a) flip 1 coin, win Y = $100 if heads,  $-100 if tails
b) flip 100 coins, win Z = (#(heads) - #(tails)) dollars

Same expectation in both: E[Y] = E[Z] = 0
Same extremes in both: max gain = $100; max loss = $100 

But 
variability 
is very 
different:

σZ = 10 

σY = 100      
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properties of  variance
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another example
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Example:
    What is Var[X] when X is outcome of one fair die?

    E[X] = 7/2, so



Var[aX+b] = a2 Var[X]

Ex: 

 

properties of  variance
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   E[X] = 0
Var[X] = 1

        Y = 1000 X
   E[Y] = E[1000 X] = 1000 E[x] = 0
Var[Y] = Var[1000 X] 
           =106Var[X] = 106



In general:       Var[X+Y] ≠ Var[X] + Var[Y]

Ex 1:

Let X = ±1 based on 1 coin flip

As shown above,  E[X] = 0, Var[X] = 1

Let Y = -X; then Var[Y] = (-1)2Var[X] = 1

But X+Y = 0, always, so Var[X+Y] = 0

Ex 2:

As another example, is Var[X+X] = 2Var[X]?

 

properties of  variance
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a zoo of  (discrete) random variables
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bernoulli random variables

An experiment results in “Success” or “Failure”
X is a random indicator variable (1=success, 0=failure)
    P(X=1) = p   and    P(X=0) = 1-p
X is called a Bernoulli random variable:  X ~ Ber(p)
E[X] = E[X2] = p
Var(X) = E[X2] – (E[X])2 = p – p2 = p(1-p)

Examples:
coin flip
random binary digit
whether a disk drive crashed

30

Jacob (aka James, Jacques) 
Bernoulli, 1654 – 1705 



 

binomial random variables

Consider n independent random variables Yi ~ Ber(p) 
X = Σi Yi is the number of successes in n trials
X is a Binomial random variable:  X ~ Bin(n,p)
 

By Binomial theorem, 
Examples

# of heads in n coin flips
# of 1’s in a randomly generated length n bit string
# of disk drive crashes in a 1000 computer cluster

   E[X] = pn
Var(X) = p(1-p)n	
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←(proof below, twice)



 

binomial pmfs

32

0 2 4 6 8 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

PMF for X ~ Bin(10,0.5)

k

P
(X
=k
)

µ ± σ

0 2 4 6 8 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

PMF for X ~ Bin(10,0.25)

k

P
(X
=k
)

µ ± σ



 

binomial pmfs
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using

k=1 gives:

hence:

letting 
j = i-1

 

mean and variance of  the binomial
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;  k=2 gives E[X2]=np[(n-1)p+1] 



 

Independent random variables

Two random variables X and Y are independent if for every 
value i that X can take, and any value j that Y can take

Pr(X=i, Y=j) = Pr(X=i)Pr(Y=j)

35



 

products of  independent r.v.s
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Theorem: If X & Y are independent, then E[X•Y] = E[X]•E[Y]
Proof:

Note: NOT true in general; see earlier example E[X2]≠E[X]2

independence



Theorem: If X & Y are independent, then 
	

 	

 Var[X+Y] = Var[X]+Var[Y]

Proof: Let

 

variance of  independent r.v.s is additive
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Var(aX+b) = a2Var(X)    

(Bienaymé, 1853)



 

mean, variance of  binomial r.v.s
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disk failures

A RAID-like disk array consists of n drives, 
each of which will fail independently with 
probability p.  Suppose it can operate 
effectively if at least one-half of its 
components function, e.g., by “majority vote.”
For what values of p is a 5-component system more likely to 
operate effectively than a 3-component system?

X5 = # failed in 5-component system ~ Bin(5, p)
X3 = # failed in 3-component system ~ Bin(3, p)

39



X5 = # failed in 5-component system ~ Bin(5, p)
X3 = # failed in 3-component system ~ Bin(3, p)
P(5 component system effective) = P(X5 < 5/2)

P(3 component system effective) = P(X3 < 3/2)

	

 	

 	

 	

 	

 	



Calculation:  
5-component system
is better iff p < 1/2
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disk failures
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Binomial distribution: models & reality

Sending a bit string over the network
n = 4 bits sent, each corrupted with probability 0.1
X = # of corrupted bits, X ~ Bin(4, 0.1)
In real networks, large bit strings (length n ≈ 104)
Corruption probability is very small: p ≈ 10-6

Extreme n and p values arise in many cases
# bit errors in file written to disk 
# of typos in a book
# of elements in particular bucket of large hash table 
# of server crashes per day in giant data center
# facebook login requests sent to a particular server

41
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Limit of  binomial 

Binomial with parameters n and 1/m. Define

What is distribution of X, the number of successes?

42

� = n/m



Siméon Poisson, 1781-1840

 

Poisson random variables

Suppose “events” happen, independently, at 
an average rate of λ per unit time.  Let X be 
the actual number of events happening in a 
given time unit.  Then X is a Poisson r.v. with 
parameter λ (denoted X ~ Poi(λ)) and has 
distribution (PMF):

Examples:
# of alpha particles emitted by a lump of radium in 1 sec.
# of traffic accidents in Seattle in one year
# of roadkill per mile on a highway.
# of white blood cells in a blood suspension
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X is a Poisson r.v. with parameter λ if it has PMF:

Is it a valid distribution?  Recall Taylor series:

So

 

Poisson random variables
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binomial random variable is Poisson in the limit

Poisson approximates binomial when n is large, p is small, 
and λ = np is “moderate”

Formally, Binomial is Poisson in the limit as 
n → ∞ (equivalently, p → 0) while holding np =  λ

45



X ~ Binomial(n,p)

I.e., Binomial ≈ Poisson for large n, small p, moderate i, λ.

 

binomial → Poisson in the limit
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sending data on a network, again

Recall example of sending bit string over a network
Send bit string of length n = 104

Probability of (independent) bit corruption is p = 10-6

X ~ Poi(λ = 104•10-6 = 0.01)
What is probability that message arrives uncorrupted?

Using Y ~ Bin(104, 10-6): 

P(Y=0) ≈ 0.990049829

47
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binomial vs Poisson
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expected value of  Poisson r.v.s
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j = i-1

(Var[X] = λ, too; proof similar, see B&T example 6.20) 

As expected, given definition 
in terms of “average rate λ”

i = 0 term is zero



 

expectation and variance of  a poisson

Recall:  if  Y ~ Bin(n,p), then:
E[Y] = pn
Var[Y] = np(1-p)

And if X ~ Poi(λ) where λ = np (n →∞, p → 0) then 

  E[X]   = λ  = np = E[Y]

  Var[X] = λ ≈ λ(1-λ/n) = np(1-p) = Var[Y]

Expectation and variance of Poisson are the same (λ)
Expectation is the same as corresponding binomial
Variance almost the same as corresponding binomial
Note: when two different distributions share the same 
mean & variance, it suggests (but doesn’t prove) that 
one may be a good approximation for the other.

50



 

geometric distribution

In a series X1, X2, ... of Bernoulli trials with success 
probability p, let Y be the index of the first success, i.e.,
     X1 = X2 = ... =  XY-1 = 0 & XY = 1
Then Y is a geometric random variable with parameter p.

Examples:
Number of coin flips until first head
Number of blind guesses on SAT until I get one right
Number of darts thrown until you hit a bullseye
Number of random probes into hash table until empty slot
Number of wild guesses at a password until you hit it

P(Y=k) = (1-p)k-1p;   Mean 1/p;    Variance (1-p)/p2
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balls in urns – the hypergeometric distribution

Draw d balls (without replacement) from an urn containing 
N, of which w are white, the rest black.  
Let X = number of white balls drawn

(note: n choose k = 0  if k < 0 or k > n)

E[X] = dp,   where p = w/N (the fraction of white balls)
proof: Let Xj be 0/1 indicator for j-th ball is white, X = Σ Xj

The Xj are dependent, but E[X] =  E[Σ Xj] = Σ E[Xj] = dp

Var[X] = dp(1-p)(1-(d-1)/(N-1))
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N

d

B&T, exercise 1.61



 

balls, urns and the supreme court
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Supreme Court case: Berghuis v. Smith

If a group is underrepresented in a jury pool, how do you tell?



 

Justice  Breyer meets CSE 312
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random variables – summary

RV:  a numeric function of the outcome of an experiment

Probability Mass Function p(x): prob that RV = x; Σp(x)=1

Cumulative Distribution Function F(x):  probability that RV ≤ x

Expectation: 

of a random variable:  E[X] = Σx xp(x)

of a function:  if Y = g(X), then E[Y] = Σx g(x)p(x)
linearity: 

E[aX + b] = aE[X] + b
E[X+Y] = E[X] + E[Y]; even if dependent
this interchange of  “order of operations” is quite special to linear 
combinations.  E.g. E[XY]≠E[X]*E[Y], in general (but see below)
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random variables – summary

Variance:  
Var[X] = E[ (X-E[X])2 ] = E[X2] - (E[X])2]

Standard deviation: σ = √Var[X]
Var[aX+b] = a2 Var[X]

If X & Y are independent, then 
E[X•Y] = E[X]•E[Y];  
Var[X+Y] = Var[X]+Var[Y] 
(These two equalities hold for indp rv’s; but not in general.)
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random variables – summary

Important Examples:

Bernoulli: P(X=1) = p and P(X=0) = 1-p  	

 μ = p,   σ2= p(1-p)

Binomial:  	

 	

 	

 	

 	

 μ = np, σ2 = np(1-p)

Poisson: 	

 	

 	

 	

 	

 μ = λ,  σ2 = λ

Bin(n,p) ≈ Poi(λ) where λ = np fixed, n →∞ (and so p=λ/n → 0)

Geometric P(X=k) = (1-p)k-1p	

 	

 	

 	

 	

 	

 μ = 1/p, σ2 = (1-p)/p2

Many others, e.g., hypergeometric
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