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Randomized Algorithms	
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Analyzing Algorithms	


Goal: “Runs fast on typical real problem instances”	

	

How do we evaluate this?	


	

Example: Binary search	

Given a sorted array, determine if the array contains the number 157?	
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Measuring efficiency	


Time ≈ # of instructions executed in a simple 
programming language	


only simple operations (+,*,-,=,if,call,…)	

each operation takes one time step	


each memory access takes one time step	
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analysis	


Problem size n	

Best-case complexity: min # steps algorithm 
takes on any input of size n	


Average-case complexity: avg # steps algorithm 
takes on inputs of size n	


Worst-case complexity: max # steps 
algorithm takes on any input of size n	
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Complexity	

The complexity of an algorithm associates a number 
T(n), the worst-case time the algorithm takes on 
problems of size n, with each problem size n.	

	


Mathematically,	

T: N+ → R+	


I.e., T is a function that maps positive integers (problem 
sizes) to positive real numbers (number of steps).	
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Simple Example	

Array of bits.	

I promise you that either they are all 1’s or ½ 0’s 
and ½ 1’s.	

	

Give me a program that will tell me which it is.	

	

Best case?	

Worst case?	

	

Neat idea: use randomization to reduce the 
worst case	
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Complexity	

The complexity of an algorithm associates a number 
T(n), the worst-case time the algorithm takes on 
problems of size n, with each problem size n.	

	


For randomized algorithms, look at 
worst-case value of E(T), where the 
expectation is taken over randomness in 
algorithm.	
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Quicksort	


10	


Sorting algorithm (assume for now all elements 
distinct)	

	

Given array of some length n	

If n = 0 or 1, halt	

	

Else pick element p of array as “pivot”	


Split array into subarrays  <p,  > p	

Recursively sort elements < p	

Recursively sort elements > p	


Analysis of Quicksort	
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Worst case number of comparisons:	

	

	

How can we use randomization to improve running 
time?	

	


Pick random element as a pivot each step	

	

=> Randomized algorithm	
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Analysis of Randomized Quicksort	
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Quicksort with random pivots	

	

X = # of comparisons.	

	

	

	

What is condition for elements ith smallest and jth 
smallest to get directly compared?	

	

Claim:  fate determined first time an elt in [ei, ej] 
picked.	

	


X =
X

1i<jn

Xij

Analysis of Randomized Quicksort���
Fix pair i,j.      Compute 	
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Define         indicator r.v. that is 1 if elt in [ei, ej] 
first selected at kth level of tree	


Ak

E(Xij) = Pr(Xij = 1)

=
X

1kn

Pr(Xij = 1|Ak)Pr(Ak)
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E(Xij)
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Analysis of Randomized Quicksort	
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 2n ln(n) +O(n)


