Randomized Algorithms

Analyzing Algorithms

Goal: “Runs fast on typical real problem instances”

How do we evaluate this?

Example: Binary search
Given a sorted array, determine if the array contains the number 157?

Measuring efficiency

Time = # of instructions executed in a simple programming language
only simple operations (+, *, -, =, if, call, …)
each operation takes one time step
each memory access takes one time step

Complexity analysis

Problem size n
Best-case complexity: min # steps algorithm takes on any input of size n
Average-case complexity: avg # steps algorithm takes on inputs of size n
Worst-case complexity: max # steps algorithm takes on any input of size n
Complexity

The *complexity* of an algorithm associates a number $T(n)$, the worst-case time the algorithm takes on problems of size n, with each problem size n.

Mathematically,

$$T : N^+ \rightarrow R^+$$

I.e., T is a function that maps positive integers (problem sizes) to positive real numbers (number of steps).

Simple Example

Array of bits.
I promise you that either they are all 1’s or $\frac{1}{2}$ 0’s and $\frac{1}{2}$ 1’s.

Give me a program that will tell me which it is.

Best case?
Worst case?

Neat idea: use randomization to reduce the worst case

For *randomized algorithms*, look at worst-case value of $E(T)$, where the expectation is taken over randomness in algorithm.
QuickSort

Sorting algorithm (assume for now all elements distinct)

Given array of some length n
If $n = 0$ or 1, halt
Else pick element p of array as “pivot”
Split array into subarrays $< p, > p$
Recursively sort elements $< p$
Recursively sort elements $> p$

Analysis of Quicksort

Worst case number of comparisons: $\binom{n}{2}$

How can we use randomization to improve running time?

Pick random element as a pivot each step

\Rightarrow Randomized algorithm

Analysis of Randomized Quicksort

QuickSort with random pivots

$X = \#$ of comparisons.

$X = \sum_{1 \leq i < j \leq n} X_{ij}$

What is condition for elements i^{th} smallest and j^{th} smallest to get directly compared?

Claim: fate determined first time an elt in $[e_i, e_j]$ picked.

Analysis of Randomized Quicksort

Fix pair i, j. Compute $E(X_{ij})$

Define A_k indicator r.v. that is 1 if elt in $[e_i, e_j]$ first selected at k^{th} level of tree

$E(X_{ij}) = Pr(X_{ij} = 1)$

$= \sum_{1 \leq k \leq n} Pr(X_{ij} = 1|A_k) Pr(A_k)$

$= \frac{2}{j - i + 1} \sum_{1 \leq k \leq n} Pr(A_k) = \frac{2}{j - i + 1}$

$Pr(X_{ij} = 1|A_k) = \frac{2}{j - i + 1}$
Analysis of Randomized Quicksort

\[E(X) = \sum_{1 \leq i < j \leq n} E(X_{ij}) \]

\[= \sum_{1 \leq i < n} \sum_{j > i} \frac{2}{j - i + 1} \]

\[\leq 2 \sum_{1 \leq i < n} \left(\frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n - i + 1} \right) \]

\[\leq 2n \ln(n) + O(n) \]