
1

2	

Randomized Algorithms	

3	

Analyzing Algorithms	

Goal: “Runs fast on typical real problem instances”	

	

How do we evaluate this?	

	

Example: Binary search	

Given a sorted array, determine if the array contains the number 157?	

4	

Measuring efficiency	

Time ≈ # of instructions executed in a simple
programming language	

only simple operations (+,*,-,=,if,call,…)	

each operation takes one time step	

each memory access takes one time step	

	

	

5	

T!

n!

Complexity ���
analysis	

Problem size n	

Best-case complexity: min # steps algorithm
takes on any input of size n	

Average-case complexity: avg # steps algorithm
takes on inputs of size n	

Worst-case complexity: max # steps
algorithm takes on any input of size n	

	

2

6	

Complexity	

The complexity of an algorithm associates a number
T(n), the worst-case time the algorithm takes on
problems of size n, with each problem size n.	

	

Mathematically,	

T: N+ → R+	

I.e., T is a function that maps positive integers (problem
sizes) to positive real numbers (number of steps).	

	

7	

Problem size !

Ti
m

e!

T(n)!

Complexity	

8	

Simple Example	

Array of bits.	

I promise you that either they are all 1’s or ½ 0’s
and ½ 1’s.	

	

Give me a program that will tell me which it is.	

	

Best case?	

Worst case?	

	

Neat idea: use randomization to reduce the
worst case	

	

9	

Complexity	

The complexity of an algorithm associates a number
T(n), the worst-case time the algorithm takes on
problems of size n, with each problem size n.	

	

For randomized algorithms, look at
worst-case value of E(T), where the
expectation is taken over randomness in
algorithm.	

3

Quicksort	

10	

Sorting algorithm (assume for now all elements
distinct)	

	

Given array of some length n	

If n = 0 or 1, halt	

	

Else pick element p of array as “pivot”	

Split array into subarrays <p, > p	

Recursively sort elements < p	

Recursively sort elements > p	

Analysis of Quicksort	

11	

Worst case number of comparisons:	

	

	

How can we use randomization to improve running
time?	

	

Pick random element as a pivot each step	

	

=> Randomized algorithm	

✓
n

2

◆

Analysis of Randomized Quicksort	

12	

Quicksort with random pivots	

	

X = # of comparisons.	

	

	

	

What is condition for elements ith smallest and jth
smallest to get directly compared?	

	

Claim: fate determined first time an elt in [ei, ej]
picked.	

	

X =
X

1i<jn

Xij

Analysis of Randomized Quicksort���
Fix pair i,j. Compute 	

13	

Define indicator r.v. that is 1 if elt in [ei, ej]
first selected at kth level of tree	

Ak

E(Xij) = Pr(Xij = 1)

=
X

1kn

Pr(Xij = 1|Ak)Pr(Ak)

=
2

j � i+ 1

X

1kn

Pr(Ak)

Pr(Xij = 1|Ak) =
2

j � i+ 1

=
2

j � i+ 1

E(Xij)

4

Analysis of Randomized Quicksort	

14	

E(X) =
X

1i<jn

E(Xij)

=
X

1i<n

X

j>i

2

j � i+ 1

 2
X

1i<n

✓
1

2
+

1

3
+ . . .+

1

n� i+ 1

◆

 2n ln(n) +O(n)

