Conditional Probability

Conditional probability of E given F: probability that E occurs given that F has occurred.
"Conditioning on F "
Written as $\mathrm{P}(\mathrm{E} \mid \mathrm{F})$
Means "P(E, given F observed)"
Sample space S reduced to those
 elements consistent with F (i.e. $\mathrm{S} \cap F$) Event space E reduced to those elements consistent with F (i.e. $\mathrm{E} \cap F$) With equally likely outcomes,

$$
\begin{aligned}
& P(E \mid F)=\frac{\# \text { of outcomes in } E \text { consistent with } F}{\# \text { of outcomes in } S \text { consistent with } F}=\frac{|E F|}{|S F|}=\frac{|E F|}{|F|} \\
& P(E \mid F)=\frac{|E F|}{|F|}=\frac{|E F| /|S|}{|F| /|S|}=\frac{P(E F)}{P(F)}
\end{aligned}
$$

coin flipping

Suppose you flip two coins \& all outcomes are equally likely.
What is the probability that both flips land on heads if...

- The first flip lands on heads?

Let $B=\{H H\}$ and $F=\{H H, H T\}$
$P(B \mid F)=P(B F) / P(F)=P(\{H H\}) / P(\{H H, H T\})$
$=(I / 4) /(2 / 4)=I / 2$

- At least one of the two flips lands on heads?

Let $A=\{H H, H T, T H\}, B A=\{H H\}$

$P(B \mid A)=|B A| /|A|=1 / 3$

- At least one of the two flips lands on tails?

Let $G=\{T H, H T, T T\}$
$P(B \mid G)=P(B G) / P(G)=P(\varnothing) / P(G)=0 / P(G)=0$

General defn: $P(E \mid F)=\frac{P(E F)}{P(F)}$ where $\mathrm{P}(\mathrm{F})>0$
Holds even when outcomes are not equally likely.
What if $P(F)=0$?
$P(E \mid F)$ undefined: (you can't observe the impossible)
Implies: $P(E F)=P(E \mid F) P(F) \quad$ ("the chain rule ")
General definition of Chain Rule:

$$
\begin{aligned}
& P\left(E_{1} E_{2} \cdots E_{n}\right)= \\
& \quad P\left(E_{1}\right) P\left(E_{2} \mid E_{1}\right) P\left(E_{3} \mid E_{1}, E_{2}\right) \cdots P\left(E_{n} \mid E_{1}, E_{2}, \ldots, E_{n-1}\right)
\end{aligned}
$$

E and F are events in the sample space S
$\mathrm{E}=\mathrm{EF} \cup \mathrm{EF}{ }^{\mathrm{c}}$

$\mathrm{EF} \cap \mathrm{EF}=\varnothing$
$\Rightarrow P(E)=P(E F)+P(E F c)$

$$
\begin{aligned}
P(E) & =P(E F)+P\left(E F^{c}\right) \\
& =P(E \mid F) P(F)+P\left(E \mid F^{c}\right) P\left(F^{c}\right) \\
& =P(E \mid F) P(F)+P\left(E \mid F^{c}\right)(I-P(F))
\end{aligned}
$$

More generally, if $F_{1}, F_{2}, \ldots, F_{n}$ partition S (mutually
exclusive, $\left.\bigcup_{i} F_{i}=S, P\left(F_{i}\right)>0\right)$, then
$P(E)=\sum_{i} P\left(E \mid F_{i}\right) P\left(F_{i}\right)$
weighted average,
F_{i} happening or not.
(Analogous to reasoning by cases; both are very handy.)

Sally has I elective left to take: either Phys or Chem. She will get A with probability $3 / 4$ in Phys, with prob $3 / 5$ in Chem. She flips a coin to decide which to take.

What is the probability that she gets an A ?

$$
\begin{aligned}
\mathrm{P}(\mathrm{~A}) & =\mathrm{P}(\mathrm{~A} \mid \text { Phys }) \mathrm{P}(\text { Phys })+\mathrm{P}(\mathrm{~A} \mid \text { Chem }) \mathrm{P}(\text { Chem }) \\
& =(3 / 4)(\mathrm{I} / 2)+(3 / 5)(\mathrm{I} / 2) \\
& =27 / 40
\end{aligned}
$$

Note that conditional probability was a means to an end in this example, not the goal itself. One reason conditional probability is important is that this is a common scenario.

Bayes Theorem
6 red or white balls in an urn

Probability of drawing 3 red balls, given 3 in urn ?

Rev.Thomas Bayes c. I701-I76I

Improbable Inspiration: The future of software may lie in the obscure theories of an $18^{\text {th }}$ century cleric named Thomas Bayes
Los Angeles Times (October 28, I996)
By Leslie Helm, Times Staff Writer
When Microsoft Senior Vice President

Steve Ballmer [now CEO] first heard his company was
 planning a huge investment in an Internet service offering... he went to Chairman Bill Gates with his concerns...

Gates began discussing the critical role of "Bayesian" systems...
source: http://www.ar-tiste.com/latimes oct-96.html

Most common form:

$$
P(F \mid E)=\frac{P(E \mid F) P(F)}{P(E)}
$$

Expanded form (using law of total probability):

$$
P(F \mid E)=\frac{P(E \mid F) P(F)}{P(E \mid F) P(F)+P\left(E \mid F^{c}\right) P\left(F^{c}\right)}
$$

Proof:

$$
\begin{aligned}
& \text { oof: } \\
& P(F \mid E)=\frac{P(E F)}{P(E)}=\frac{P(E \mid F) P(F)}{P(E)}
\end{aligned}
$$

Most common form:

$$
P(F \mid E)=\frac{P(E \mid F) P(F)}{P(E)}
$$

Expanded form (using law of total probability):

$$
P(F \mid E)=\frac{P(E \mid F) P(F)}{P(E \mid F) P(F)+P\left(E \mid F^{c}\right) P\left(F^{c}\right)}
$$

Why it's important:
Reverse conditioning
$\mathrm{P}($ model \mid data $) \sim \mathrm{P}($ data | model $)$
Combine new evidence (E) with prior belief $(P(F))$
Posterior vs prior

An urn contains 6 balls, either 3 red +3 white or all 6 red. You draw 3; all are red.
Did urn have only 3 red?
Can't tell
Suppose it was $3+3$ with probability $p=3 / 4$.

Did urn have only 3 red?
$M=$ urn has 3 red +3 white
D = I drew 3 red

$$
\begin{aligned}
P(M \mid D) & =P(D \mid M) P(M) /\left[P(D \mid M) P(M)+P\left(D \mid M^{c}\right) P\left(M^{c}\right)\right] \\
P(D \mid M) & =(3 \text { choose } 3) /(6 \text { choose } 3)=I / 20 \\
P(M \mid D) & =(I / 20)(3 / 4) /[(I / 20)(3 / 4)+(I)(I / 4)]=3 / 23
\end{aligned}
$$

prior $=3 / 4$; posterior $=3 / 23$

Suppose an HIV test is 98% effective in detecting HIV, i.e., its "false negative" rate $=2 \%$. Suppose furthermore, the test's "false positive" rate $=1 \%$.
0.5\% of population has HIV

Let $\mathrm{E}=$ you test positive for HIV
Let $F=$ you actually have HIV
What is $\mathrm{P}(\mathrm{F} \mid \mathrm{E})$?
Solution:

$$
\begin{aligned}
P(F \mid E) & =\frac{P(E \mid F) P(F)}{P(E \mid F) P(F)+P\left(E \mid F^{c}\right) P\left(F^{c}\right)} \\
& =\frac{(0.98)(0.005)}{(0.98)(0.005)+(0.01)(1-0.005)^{K}} \\
& \approx 0.330 \quad \mathrm{P}(\mathrm{E}) \approx 1.5 \%
\end{aligned}
$$

Note difference between conditional and joint probability: $P(F \mid E)=33 \% ; P(F E)=0.49 \%$
why testing is still good

	HIV +	HIV-
Test +	$0.98=P(E \mid F)$	$0.01=P\left(E \mid F^{c}\right)$
Test -	$0.02=P\left(E^{c} \mid F\right)$	$0.99=P\left(E^{c} \mid F^{c}\right)$

Let $\mathrm{E}^{\mathrm{C}}=$ you test negative for HIV
Let $F=$ you actually have HIV
What is $\mathrm{P}\left(\mathrm{F} \mid \mathrm{E}^{\mathrm{C}}\right)$?

$$
\begin{aligned}
P\left(F \mid E^{c}\right) & =\frac{P\left(E^{c} \mid F\right) P(F)}{P\left(E^{c} \mid F\right) P(F)+P\left(E^{c} \mid F^{c}\right) P\left(F^{c}\right)} \\
& =\frac{(0.02)(0.005)}{(0.02)(0.005)+(0.99)(1-0.005)} \\
& \approx 0.0001
\end{aligned}
$$

