Learning From Data: MLE

Maximum Likelihood Estimators

Parameter Estimation

Common approach in statistics: use a parametric model of data:

Assume data set:
$\operatorname{Bin}(n, p), \quad$ Poisson $(\lambda), \quad N\left(\mu, \sigma^{2}\right)$

$$
\exp (\lambda) \quad \operatorname{Uniform}(a, b)
$$

But parameters are unknown!!! Need to estimate them.

Parameter Estimation

- Assuming sample $x_{1}, x_{2}, \ldots, x_{n}$ is from a parametric distribution $f(x \mid \theta)$, estimate θ.
-E.g.: Given sample HHTTTTTHTHTTTHH of (possibly biased) coin flips, estimate
- $\quad \theta=$ probability of Heads
$f(x \mid \theta)$ is the Bernoulli probability mass function with parameter θ

Likelihood

- $P(x \mid \theta)$: Probability of event x given model θ
- Viewed as a function of x (fixed θ), it's a probability -E.g., $\Sigma_{\times} P(x \mid \theta)=1$
- Viewed as a function of θ (fixed x), it's a likelihood -E.g., $\Sigma_{\theta} \mathrm{P}(\mathrm{x} \mid \theta)$ can be anything; relative values of interest. E.g., if $\theta=$ prob of heads in a sequence of coin flips then $\mathrm{P}(\mathrm{HHTHH} \mid .6)>\mathrm{P}(\mathrm{HHTHH} \mid .5)$,
l.e., event HHTHH is more likely when $\theta=.6$ than $\theta=.5$
-And what θ make HHTHH most likely?

Likelihood Function

${ }^{\bullet}$ P(HHTHH| θ):
Probability of HHTHH, given $P(H)=\theta$:

θ	$\theta^{4}(1-\theta)$
0.2	0.0013
0.5	0.0313
0.8	0.0819
0.95	0.0407

Maximum Likelihood Parameter Estimation

- One (of many) approaches to param. est.
- Likelihood of (indp) observations $x_{1}, x_{2}, \ldots, x_{n}$

$$
L\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1}^{n} f\left(x_{i} \mid \theta\right)
$$

- As a function of θ, what θ maximizes the likelihood of the data actually observed
- Typical approach: $\frac{\partial}{\partial \theta} L(\vec{x} \mid \theta)=0$ or $\frac{\partial}{\partial \theta} \log L(\vec{x} \mid \theta)=0$

Example I

- n coin flips, $x_{1}, x_{2}, \ldots, x_{n} ; n_{0}$ tails, n_{1} heads, $n_{0}+n_{l}=n$; $\theta=$ probability of heads

$$
\begin{aligned}
L\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta\right) & =(1-\theta)^{n_{0}} \theta^{n_{1}} \\
\log L\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta\right) & =n_{0} \log (1-\theta)+n_{1} \log \theta \\
\frac{\partial}{\partial \theta} \log L\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta\right) & =\frac{-n_{0}}{1-\theta}+\frac{n_{1}}{\theta} \\
\text { Setting to zero and solving: } & \begin{array}{l}
\text { Observed fraction of } \\
\text { successes in sample is }
\end{array} \\
\begin{array}{ll}
\text { MLE of success } \\
\text { probability in populatit }
\end{array} & =\frac{n_{1}}{n}
\end{aligned}
$$

(Also verify it's max, not min, \& not better on boundary)

Parameter Estimation

- Assuming sample $x_{1}, x_{2}, \ldots, x_{n}$ is from a parametric distribution $f(x \mid \theta)$, estimate θ.
- E.g.: Given n normal samples, estimate mean \& variance

$$
\begin{aligned}
f(x) & =\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(x-\mu)^{2} /\left(2 \sigma^{2}\right)} \\
\theta & =\left(\mu, \sigma^{2}\right)
\end{aligned}
$$

Ex2: I got data; a little birdie tells me it's normal, and promises $\sigma^{2}=1$

Which is more likely: (a) this?

μ unknown, $\sigma^{2}=1$

Which is more likely: (b) or this?

μ unknown, $\sigma^{2}=1$

Which is more likely: (c) or this?

μ unknown, $\sigma^{2}=1$

Which is more likely: (c) or this?

μ unknown, $\sigma^{2}=1$
Looks good by eye, but how do I optimize my estimate of μ ?

Ex. 2: $x_{i} \sim N\left(\mu, \sigma^{2}\right), \sigma^{2}=1, \mu$ unknown

$$
\begin{aligned}
L\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta\right) & =\prod_{1 \leq i \leq n} \frac{1}{\sqrt{2 \pi}} e^{-\left(x_{i}-\theta\right)^{2} / 2} \\
\ln L\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta\right) & =\sum_{1 \leq i \leq n}-\frac{1}{2} \ln 2 \pi-\frac{\left(x_{i}-\theta\right)^{2}}{2} \\
\frac{d}{d \theta} \ln L\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta\right) & =\sum_{1 \leq i \leq n}\left(x_{i}-\theta\right)
\end{aligned}
$$

And verify it's max, not $\min \&$ not better on

$$
=\left(\sum_{1 \leq i \leq n} x_{i}\right)-n \theta=0
$$

boundary ${ }_{\text {d LA }}=0$

$$
\hat{\theta}=\left(\sum_{1 \leq i \leq n} x_{i}\right) / n=\bar{x}
$$

Sample mean is MLE of population mean

Hmm ..., density \neq probability

- So why is "likelihood" function equal to product of densities??
-a) for maximizing likelihood, we really only care about relative likelihoods, and density captures that
- and/or
$\cdot b)$ if density at x is $f(x)$, for any small $\delta>0$, the probability of a sample within $\pm \delta / 2$ of x is $\approx \delta f(x)$, but δ is constant wrt θ, so it just drops out of

$$
\mathrm{d} / \mathrm{d} \theta \log L(\ldots)=0 .
$$

Ex3: I got data; a little birdie tells me it's normal (but does not tell me σ^{2})

Which is more likely: (a) this?

μ, σ^{2} both unknown

Which is more likely: (b) or this?

μ, σ^{2} both unknown

Which is more likely: (c) or this?
 μ, σ^{2} both unknown

Which is more likely: (d) or this?

μ, σ^{2} both unknown

Which is more likely: (d) or this?

μ, σ^{2} both unknown

Looks good by eye, but how do I optimize my estimates of $\mu \& \sigma^{2}$?

Ex 3: $x_{i} \sim N\left(\mu, \sigma^{2}\right), \mu, \sigma^{2}$ both unknown

EX 3: $x_{i} \sim N\left(\mu, \sigma^{2}\right), \mu, \sigma^{2}$ both unknown

$$
\begin{aligned}
\ln L\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta_{1}, \theta_{2}\right) & =\sum_{1 \leq i \leq n}-\frac{1}{2} \ln 2 \pi \theta_{2}-\frac{\left(x_{i}-\theta_{1}\right)^{2}}{2 \theta_{2}} \\
\frac{\partial}{\partial \theta_{1}} \ln L\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta_{1}, \theta_{2}\right) & =\sum_{1 \leq i \leq n} \frac{\left(x_{i}-\theta_{1}\right)}{\theta_{2}}=0 \\
\begin{array}{l}
\text { Likelihood } \\
\text { surface }
\end{array} & \hat{\theta}_{1}
\end{aligned}=\left(\sum_{1 \leq i \leq n} x_{i}\right) / n=\bar{x} \quad 1 .
$$

$$
\theta_{1}^{\substack{\text { Likelihood } \\ \text { surface }}}
$$

Sample mean is MLE of population mean, again

In general, a problem like this results in 2 equations in 2 unknowns. Easy in this case, since θ_{2} drops out of the $\partial / \partial \theta_{1}=0$ equation n_{23}

Ex. 3, (cont.)

$$
\begin{aligned}
\ln L\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta_{1}, \theta_{2}\right) & =\sum_{1 \leq i \leq n}-\frac{1}{2} \ln 2 \pi \theta_{2}-\frac{\left(x_{i}-\theta_{1}\right)^{2}}{2 \theta_{2}} \\
\frac{\partial}{\partial \theta_{2}} \ln L\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta_{1}, \theta_{2}\right) & =\sum_{1 \leq i \leq n}-\frac{1}{2} \frac{2 \pi}{2 \pi \theta_{2}}+\frac{\left(x_{i}-\theta_{1}\right)^{2}}{2 \theta_{2}^{2}}=0 \\
\hat{\theta}_{2} & =\left(\sum_{1 \leq i \leq n}\left(x_{i}-\hat{\theta}_{1}\right)^{2}\right) / n=\bar{s}^{2}
\end{aligned}
$$

Sample variance is MLE of population variance

Summary

- MLE is one way to estimate parameters from data
- You choose the form of the model (normal, binomial, ...)
- Math chooses the value(s) of parameter(s)
- Has the intuitively appealing property that the parameters maximize the likelihood of the observed data; basically just assumes your sample is "representative"

