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Maximum Likelihood Estimators	



Learning From Data: 
MLE	





2	



Parameter Estimation	



Common approach in statistics: use a 
parametric model of data:	



Assume data set:	



	



	



	

But parameters are unknown!!! Need to estimate 
them.	



Bin(n, p),
Poisson(�), N(µ,�2)

exp(�)
Uniform(a, b)
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Parameter Estimation	



• Assuming sample x1, x2, ..., xn is from a 
parametric distribution f(x|θ), estimate θ.	



• E.g.:  Given sample HHTTTTTHTHTTTHH ���
of (possibly biased) coin flips, estimate 	



•             θ = probability of Heads	



f(x|θ) is the Bernoulli probability mass function with parameter θ	
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• P(x | θ):  Probability of event x given model θ	


• Viewed as a function of x (fixed θ), it’s a probability	



• E.g., Σx P(x | θ) = 1	



• Viewed as a function of θ (fixed x), it’s a likelihood	


• E.g., Σθ P(x | θ) can be anything; relative values of interest.  ���
E.g., if θ = prob of heads in a sequence of coin flips then ���
    P(HHTHH | .6) > P(HHTHH | .5), ���
I.e., event HHTHH is more likely when θ = .6 than θ = .5	



• And  what θ make HHTHH most likely?	



Likelihood	





Likelihood Function	


• P( HHTHH | θ ): 
Probability of HHTHH, 
given P(H) = θ:	



θ	

 θ4(1-θ)	



0.2	

 0.0013	



0.5	

 0.0313	



0.8	

 0.0819	



0.95	

 0.0407	



max	
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• One (of many) approaches to param. est.	



• Likelihood of (indp) observations x
1
, x

2
, ..., x

n	



• As a function of θ, what θ maximizes the 
likelihood of the data actually observed	



• Typical approach:                       or	



Maximum Likelihood 
Parameter Estimation	
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(Also verify it’s max, not min, & not better on boundary)	



Example 1	


• n coin flips, x1, x2, ..., xn;   n0 tails, n1 heads,  n0

 
+ n1 = n;  

θ = probability of heads	



 

Observed fraction of 
successes in sample is 
MLE of success 
probability in population	



dL/dθ = 0#
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Parameter Estimation	


• Assuming sample x1, x2, ..., xn is from a 
parametric distribution f(x|θ), estimate θ.	



• E.g.:  Given n normal samples, ���
estimate mean & variance	



μ	
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Ex2: I got data; a little birdie tells me ���
it’s normal, and promises σ2 = 1	



X          X  XX    X  XXX               X	



Observed Data	



x →	
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μ	



1	



Which is more likely: (a) this?	



X          X  XX    X  XXX               X	



Observed Data	



μ unknown, σ2 = 1	





μ	



1	



Which is more likely:  (b) or this?	
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X          X  XX    X  XXX               X	



Observed Data	



μ unknown, σ2 = 1	





μ	



1	



Which is more likely:  (c) or this?	
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X          X  XX    X  XXX               X	



Observed Data	



μ unknown, σ2 = 1	





μ	



1	



Which is more likely:  (c) or this?	
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X          X  XX    X  XXX               X	



Observed Data	



Looks good by eye, but how do I optimize my estimate of μ  ?	



μ unknown, σ2 = 1	
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Ex. 2: ���
	



And verify it’s max, not 
min & not better on 
boundary	



 

Sample mean is MLE of 
population mean	



dL/dθ = 0#
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Hmm …, density ≠ probability	


• So why is “likelihood” function equal to 
product of densities??	



• a) for maximizing likelihood, we really only 
care about relative likelihoods, and density 
captures that	



• and/or	



• b) if density at x is f(x), for any small δ>0, 
the probability of a sample within ±δ/2 of x 
is ≈ δf(x), but δ is constant wrt θ, so it just 
drops out of ���
    d/dθ log L(…) = 0.	
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Ex3: I got data; a little birdie tells me 
it’s normal (but does not tell me σ2)	



X          X  XX    X  XXX               X	



Observed Data	



x →	
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μ	



1	



Which is more likely: (a) this?	



X          X  XX    X  XXX               X	



Observed Data	



μ, σ2  both unknown	



μ ± 1	
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μ	



 3   	



Which is more likely: (b) or this?	



X          X  XX    X  XXX               X	



Observed Data	



μ, σ2  both unknown	



μ ± 3                 	





μ	



1	



Which is more likely:  (c) or this?	
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X          X  XX    X  XXX               X	



Observed Data	



μ, σ2  both unknown	



μ ± 1	





μ

Which is more likely:  (d) or this?	
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X          X  XX    X  XXX               X	



Observed Data	



μ, σ2  both unknown	



μ ± 0.5	





μ

Which is more likely:  (d) or this?	
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X          X  XX    X  XXX               X	



Observed Data	



Looks good by eye, but how do I optimize my estimates of μ & σ2 ?	


μ, σ2  both unknown	



μ ± 0.5	
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Ex 3: ���
	



θ
1


θ
2


Likelihood 
surface	
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Ex 3: ���
	



θ
1


θ
2


Sample mean is MLE of 
population mean, again	



In general, a problem like this results in 2 equations in 2 unknowns.  
Easy in this case, since θ2 drops out of the ∂/∂θ1 = 0 equation	



Likelihood 
surface	
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Ex. 3, (cont.) ���
	



Sample variance is MLE of 
population variance	
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Summary	


• MLE is one way to estimate parameters from data	


• You choose the form of the model (normal, 
binomial, ...)	



• Math chooses the value(s) of parameter(s)	


• Has the intuitively appealing property that the 
parameters maximize the likelihood of the observed 
data; basically just assumes your sample is 
“representative”	




