
tail bounds 



tail bounds 

Often, we want to bound the probability that a 
random variable X is far from its expectation.	

	

A random variable X has mean	

  Can we bound	
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µ

Pr(X � 100µ)

Pr(X � 1, 000, 000µ)

Pr(X � 1, 000µ)

Not without additional information… 



tail bounds 

We know that randomized quicksort runs in ���
O(n log n) expected time.  But what’s the 
probability that it takes more than 10 n log(n) 
steps?  More than n1.5 steps?	

If we know the expected advertising cost is 
$1500/day, what’s the probability we go over 
budget? By a factor of 4?	

We only expect 10,000 homeowners to default 
on their mortgages. What’s the probability that 
1,000,000 homeowners default?	
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the lake wobegon effect 

“Lake Wobegon, Minnesota, where 	

all the women are strong, ���

all the men are good looking, ���
and ���

all the children are above average…”	
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Markov’s inequality 

An arbitrary random variable could have very bad 
behavior.  But knowledge is power; if we know 
something, can we bound the badness?	


Suppose we know that X is always non-negative.	


Theorem:  If X is a non-negative random 
variable, then for every α > 0, we have	


	

	

Corr: 	

                P(X ≥ αE[X]) ≤ 1/α	
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Markov’s inequality 

Theorem:  If X is a non-negative random 
variable, then for every α > 0, we have	

	

	

Example: if X = time to quicksort n items,  
expectation  E[X] ≈ 1.4 n log n.  What’s 
probability that it takes > 4 times as long as 
expected?	


By Markov’s inequality:	

       P(X ≥ 4 • E[X]) ≤ E[X]/(4 E[X]) = 1/4	
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Markov’s inequality 

Theorem:  If X is a non-negative random 
variable, then for every α > 0, we have	

	


	

Proof:	

	

	

	


E[X] = Σx xP(x) 	


        = Σx<α xP(x) + Σx≥α xP(x)	


        ≥        0          + Σx≥ααP(x)	


        = αP(X ≥ α)	
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(x ≥ 0; α ≤ x) 



Markov’s inequality 

Theorem:  If X is a non-negative random 
variable, then for every α > 0, we have	

	


	

Proof:	

	

	

	


E[X] = Σx xP(x) 	


        = Σx<α xP(x) + Σx≥α xP(x)	


        ≥        0          + Σx≥ααP(x)	


        = αP(X ≥ α)	
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(x ≥ 0; α ≤ x) 



tail bounds 

For a random variable X, the tails of X are the 
parts of the PMF that are “far” from its mean. 	
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binomial tails 
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Chebyshev’s inequality 

If we know more about a random variable, we 
can often use that to get better tail bounds.	

	

Suppose we also know the variance.	

	


Theorem:  If Y is an arbitrary random variable 
with E[Y] = µ,  then, for any α > 0,	
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Chebyshev’s inequality 

Theorem:  If  Y is an arbitrary random 
variable with µ = E[Y], then, for any α > 0,	

	

	

	


	

	

	


X is non-negative, so we can apply Markov’s 
inequality:	


Proof: 	
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Chebyshev’s inequality 

Theorem:  If  Y is an arbitrary random 
variable with µ = E[Y], then, for any α > 0,	

	

	

	


	

	

	


X is non-negative, so we can apply Markov’s 
inequality:	


Proof: 	
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Chebyshev’s inequality 

Theorem:  If Y is an arbitrary random variable 
with µ = E[Y],  then, for any α > 0,	

	

	

	

	

Corr: If	

	

Then:	


15	




Chebyshev’s inequality 
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Chebyshev’s inequality 

Y = comparisons in quicksort for n=1024	


E[Y] = 1.4 n log2 n  ≈ 14000	


Var[Y] = ((21-2π2)/3)*n2 ≈ 441000 

(i.e.  SD[Y] ≈ 664)	


P(Y ≥ 4μ) = P(Y-μ≥ 3μ) ≤  Var(Y)/(9μ2) < .000242	


1000 times smaller than Markov 
but still overestimated?: σ/µ ≈ 0.05, so 4µ≈ µ+60σ 
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Chebyshev’s inequality 

X Binomial (n,1/2)	


	


	


	


Markov:	


Chebyshev:	


If n= 1000,  Probability > 750 H’s at most 0.002	


Truth:	
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Pr(X � 3/4n)

2/3

0.000000000000000000000000000000000000000000000000000000000067

2/n    (because Chebyshev is 2-sided)  



Chernoff bounds 

Suppose X ~ Bin(n,p)	

µ = E[X] = pn	

	

Chernoff bound:	
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Pr(X > (1 + �)µ)  e�
µ�2

3

Pr(X < (1� �)µ)  e�
µ�2

2



Chernoff bounds 

Suppose X ~ Bin(n,p)	

µ = E[X] = pn	

	

Another Chernoff bound:	

	

	

	

	

	

	

	

Other versions on the web (e.g. for larger delta)	
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Pr(|X � pn| � ✏pn)  2e
�
⇣

✏2

2+✏

⌘
·pn

For any ✏ � 0



Chernoff bounds 

Suppose X ~ Bin(n,p)	

µ = E[X] = pn	


Chernoff bound:	
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Polling and sampling 
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What fraction of people approve of president? 
 
Poll: call up n random people. 
 
 
 
 
Define average  X/n   as our estimate. 
 
What should n be? How good an estimate? 
How confident are we?  

X = X1 +X2 + . . . Xn



router buffers 
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router buffers 

Model: 100,000 computers each independently 
send a packet with probability q = 0.01 each second.  
The router processes its buffer every second.  How 
many packet buffers so that router drops a packet:	

• Never?	

    100,000	

• With probability at most 10-6, every hour?	

    1210	

• With probability at most 10-6, every year?	

    1250	

• With probability at most 10-6, since Big Bang?	

    1331	

(these numbers may be slightly off.)	
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summary 

Tail bounds – bound probabilities of extreme events	

Three (of many):	

  Markov: P(X ≥ kμ) ≤ 1/k (weak, but general; only need X ≥ 0 and μ)	


  Chebyshev: P(|X-μ| ≥ kσ) ≤ 1/k2 (often stronger, but also need σ)	


  Chernoff: various forms, depending on underlying distribution; 
usually 1/exponential, vs 1/polynomial above	


  Generally, more assumptions/knowledge ⇒ better bounds	


“Better” than exact distribution?  	

Maybe, e.g. if latter is unknown or mathematically messy	


“Better” than, e.g., “Poisson approx to Binomial”?	

Maybe, e.g. if you need rigorously “≤” rather than just “≈”	
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