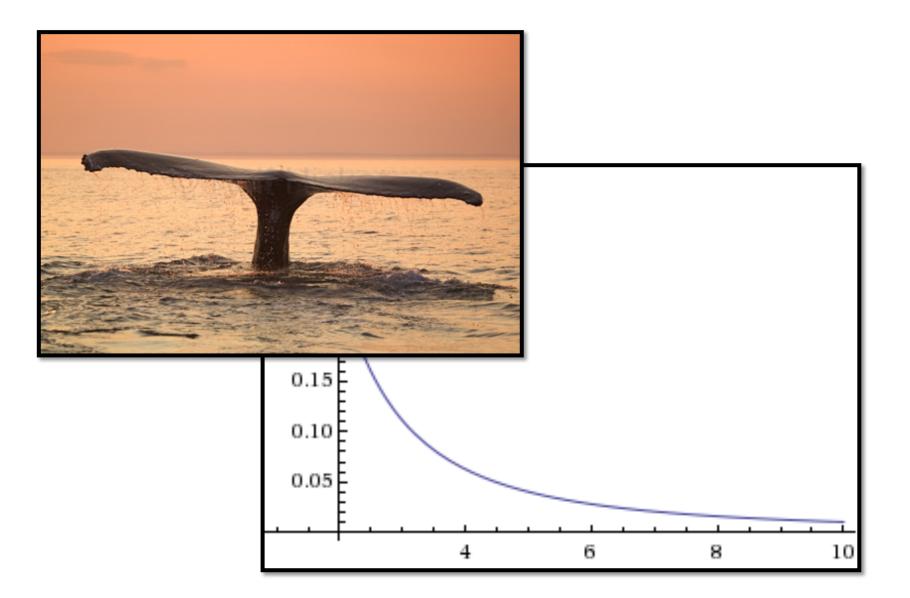
tail bounds



Often, we want to bound the probability that a random variable X is far from its expectation.

A random variable X has mean μ Can we bound $Pr(X > 100\mu)$

> $Pr(X \ge 1,000\mu)$ $Pr(X \ge 1,000,000\mu)$

Not without additional information...

We know that randomized quicksort runs in O(n log n) expected time. But what's the probability that it takes more than 10 n log(n) steps? More than n^{1.5} steps?

If we know the expected advertising cost is \$1500/day, what's the probability we go over budget? By a factor of 4?

We only expect 10,000 homeowners to default on their mortgages. What's the probability that 1,000,000 homeowners default?

"Lake Wobegon, Minnesota, where all the women are strong, all the men are good looking, and all the children are above average..."

An *arbitrary* random variable could have very bad behavior. But knowledge is power; if we know *something*, can we bound the badness?

Suppose we know that X is always non-negative.

Theorem: If X is a non-negative random variable, then for every $\alpha > 0$, we have

$$P(X \ge \alpha) \le \frac{E[X]}{\alpha}$$

Corr:

$$P(X \ge \alpha E[X]) \le 1/\alpha$$

Theorem: If X is a non-negative random variable, then for every $\alpha > 0$, we have

$$P(X \ge \alpha) \le \frac{E[X]}{\alpha}$$

Example: if X = time to quicksort *n* items, expectation $E[X] \approx 1.4 n \log n$. What's probability that it takes > 4 times as long as expected?

By Markov's inequality:

 $P(X \ge 4 \cdot E[X]) \le E[X]/(4 E[X]) = 1/4$

7

Theorem: If X is a non-negative random variable, then for every $\alpha > 0$, we have

$$P(X \ge \alpha) \le \frac{E[X]}{\alpha}$$

Proof: $E[X] = \sum_{x \in \alpha} xP(x)$ $= \sum_{x \leq \alpha} xP(x) + \sum_{x \geq \alpha} xP(x)$ $\geq 0 + \sum_{x \geq \alpha} \alpha P(x) \quad (x \geq 0; \alpha \leq x)$ $= \alpha P(X \geq \alpha)$

Markov's inequality

tive random

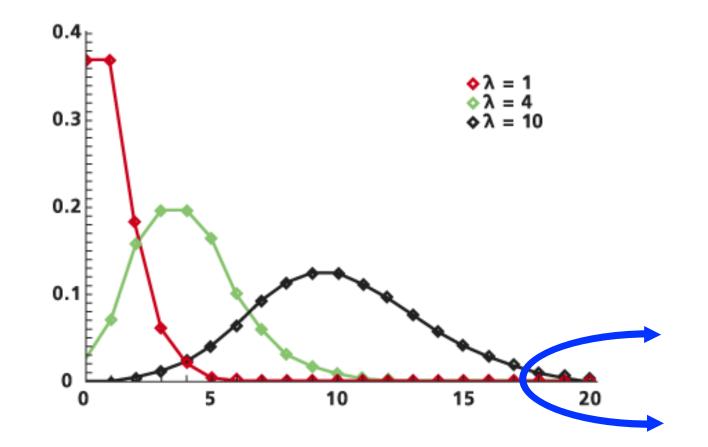
have

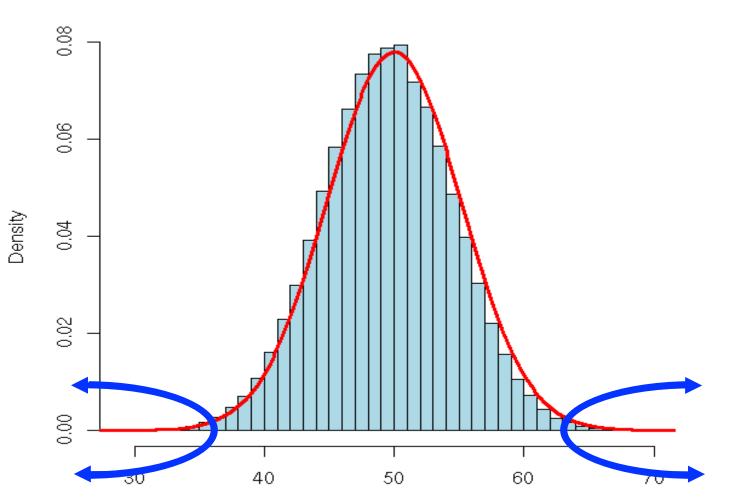
Theorem: If X je variable, then for

<u>></u>

Proof: E[X]

For a random variable X, the *tails* of X are the parts of the PMF that are "far" from its mean.

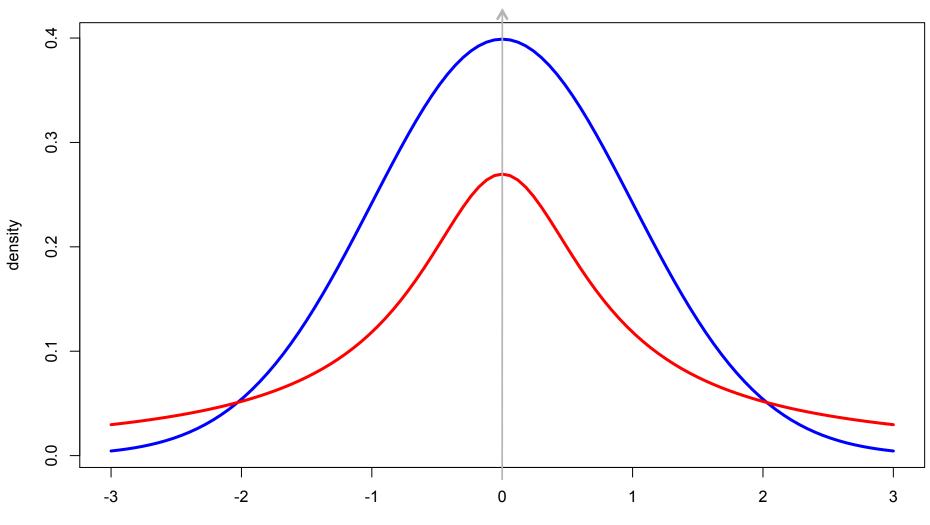




Binomial distribution, n=100, p=.5

Х

heavy-tailed distribution



Х

П

If we know *more* about a random variable, we can often use that to get *better* tail bounds.

Suppose we also know the variance.

Theorem: If Y is an arbitrary random variable with $E[Y] = \mu$, then, for any $\alpha > 0$,

$$P(|Y - \mu| \ge \alpha) \le \frac{\operatorname{Var}[Y]}{\alpha^2}$$

Theorem: If Y is an arbitrary random variable with $\mu = E[Y]$, then, for any $\alpha > 0$,

$$P(|Y - \mu| \ge \alpha) \le \frac{\operatorname{Var}[Y]}{\alpha^2}$$

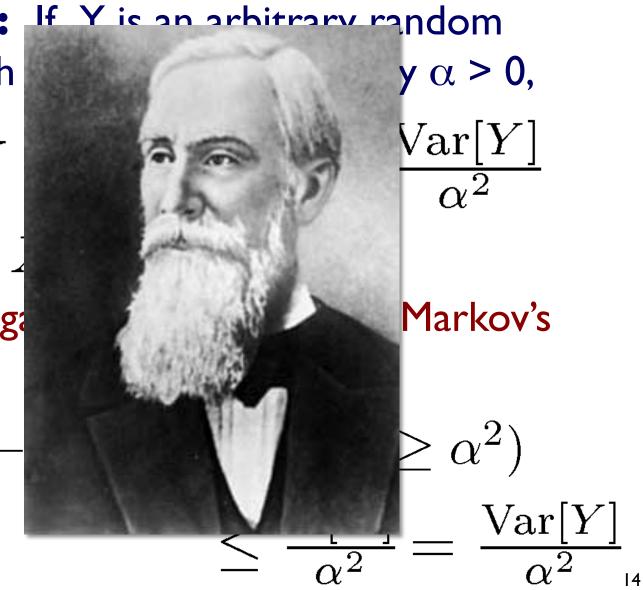
Proof: Let $X = (Y - \mu)^2$

X is non-negative, so we can apply Markov's inequality:

$$P(|Y - \mu| \ge \alpha) = P(X \ge \alpha^2)$$
$$\leq \frac{E[X]}{\alpha^2} = \frac{\operatorname{Var}[Y]}{\alpha^2}$$

Chebyshev's inequality

Theorem: variable with P(|Y|)Proof: Let X is non-neg inequality: P(|Y



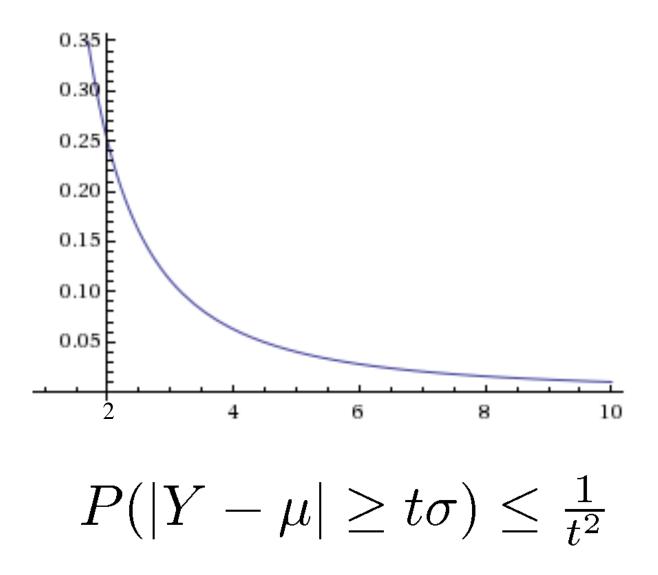
Theorem: If Y is an arbitrary random variable with $\mu = E[Y]$, then, for any $\alpha > 0$,

$$P(|Y - \mu| \ge \alpha) \le \frac{\operatorname{Var}[Y]}{\alpha^2}$$

Corr: If

$$\sigma = SD[Y] = \sqrt{\operatorname{Var}[Y]}$$
 Then:
$$P(|Y - \mu| \ge t\sigma) \le \frac{\sigma^2}{t^2\sigma^2} = \frac{1}{t^2}$$

Chebyshev's inequality



16

Chebyshev's inequality

$$P(|Y - \mu| \ge \alpha) \le \frac{\operatorname{Var}[Y]}{\alpha^2}$$

Y = comparisons in quicksort for n=1024 E[Y] = 1.4 n log₂ n ≈ 14000 Var[Y] = $((21-2\pi^2)/3)^*n^2 \approx 441000$ (i.e. SD[Y] ≈ 664) P(Y ≥ 4 μ) = P(Y- μ ≥ 3 μ) ≤ Var(Y)/(9 μ ²) < .000242

1000 times smaller than Markov but still overestimated?: $\sigma/\mu \approx 0.05$, so $4\mu \approx \mu + 60\sigma$

X Binomial (n, I/2)

$$Pr(X \ge 3/4n)$$

Markov:2/3Chebyshev:2/n (because Chebyshev is 2-sided)If n= 1000, Probability > 750 H's at most 0.002Truth:

What fraction of people approve of president?

Poll: call up n random people.

$$X = X_1 + X_2 + \dots + X_n$$

Define average X/n as our estimate.

What should n be? How good an estimate? How confident are we? Suppose X ~ Bin(n,p) $\mu = E[X] = pn$

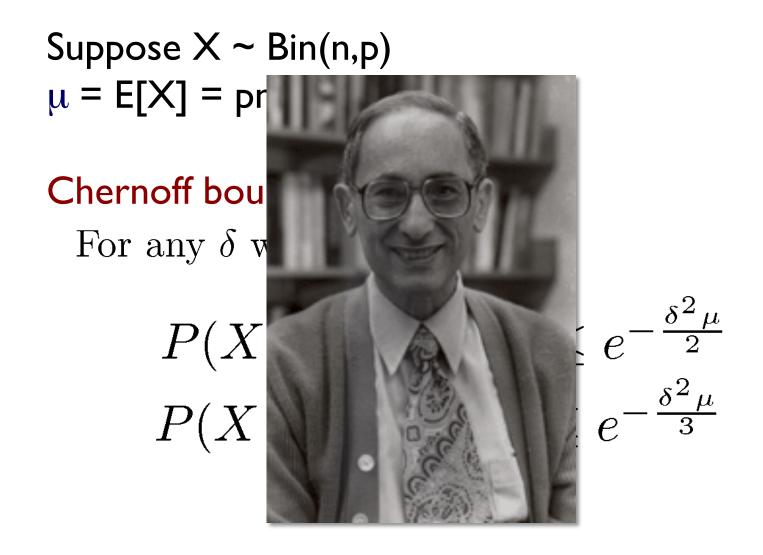
Chernoff bound:

For any δ with $0 < \delta < 1$, $Pr(X > (1 + \delta)\mu) \le e^{-\frac{\mu\delta^2}{3}}$ $Pr(X < (1 - \delta)\mu) \le e^{-\frac{\mu\delta^2}{2}}$ Suppose X is the sum of independent random variables $X = X_1 + X_2 + ... + X_n$ where X_i in [0,1] $\mu = E[X] = pn$

Another Chernoff bound: For any $\epsilon \ge 0$ $Pr(|X - pn| \ge \epsilon pn) \le 2e^{-\left(\frac{\epsilon^2}{2+\epsilon}\right) \cdot pn}$

Many variants

Chernoff bounds



router buffers



Model: 100,000 computers independently of each other send a packet with probability q = 0.01 each second. The router processes its buffer every second. How many packet buffers so that router drops a packet:

• Never?

100,000

- With probability at most 10⁻⁶, every hour?
 1210
- With probability at most 10⁻⁶, every year?
 1250
- With probability at most 10⁻⁶, since Big Bang?
 1331

(these numbers may be slightly off.)

Tail bounds – bound probabilities of extreme events Three (of many):

Markov: $P(X \ge k \mu) \le 1/k$ (weak, but general; only need $X \ge 0$ and μ) Chebyshev: $P(|X - \mu| \ge k \sigma) \le 1/k^2$ (often stronger, but also need σ) Chernoff: various forms, depending on underlying distribution; usually 1/exponential, vs 1/polynomial above Generally, more assumptions/knowledge \Rightarrow better bounds "Better" than exact distribution?

Maybe, e.g. if latter is unknown or mathematically messy "Better" than, e.g., "Poisson approx to Binomial"? Maybe, e.g. if you need rigorously "≤" rather than just "≈"